
MITOCHONDRIAL LIPID PEROXIDATION DRIVES LIPOFUSCIN ACCUMULATION 2007
BIOCHEMISTRY (Moscow) Vol. 90 No. 12 2025
14. Porta, E., Llesuy, S., Monserrat, A. J., Benavides, S.,
and Travacio, M. (1995) Changes in cathepsin B
and lipofuscin during development and aging in
rat brain and heart, Gerontology, 41, 81-93, https://
doi.org/10.1159/000213727.
15. Nakano,M., Oenzil,F., Mizuno,T., and Gotoh,S. (1995)
Age-related changes in the lipofuscin accumulation
of brain and heart, Gerontology, 41, 69-79, https://
doi.org/10.1159/000213726.
16. Kakimoto, Y., Okada, C., Kawabe, N., Sasaki, A.,
Tsukamoto, H., Nagao, R., and Osawa, M. (2019)
Myocardial lipofuscin accumulation in ageing and
sudden cardiac death, Sci. Rep., 9, 3304, https://
doi.org/10.1038/s41598-019-40250-0.
17. Faragher, R. G. A. (2021) Simple detection methods
for senescent cells: opportunities and challeng-
es, Front. Aging, 2, 686382, https://doi.org/10.3389/
fragi.2021.686382.
18. Barbouti, A., Lagopati, N., Veroutis, D., Goulas, V.,
Evangelou, K., Kanavaros, P., Gorgoulis, V. G., and
Galaris, D. (2021) Implication of dietary iron-chelat-
ing bioactive compounds in molecular mechanisms of
oxidative stress-induced cell ageing, Antioxidants (Ba-
sel), 10, 491, https://doi.org/10.3390/antiox10030491.
19. Naseri, N. N., Ergel, B., Kharel, P., Na, Y., Huang, Q.,
Huang, R., Dolzhanskaya, N., Burre, J., Velinov, M. T.,
and Sharma, M. (2020) Aggregation of mutant cyste-
ine string protein-alpha via Fe-S cluster binding is
mitigated by iron chelators, Nat. Struct. Mol. Biol.,
27, 192-201, https://doi.org/10.1038/s41594-020-0375-y.
20. Yin,D. (1996) Biochemical basis of lipofuscin, ceroid,
and age pigment-like fluorophores, Free Radic.
Biol. Med., 21, 871-888, https://doi.org/10.1016/0891-
5849(96)00175-X.
21. Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta,R.,
Zaitsev, E. M., Gleason, C.E., Patel, D.N., Bauer, A.J.,
Cantley, A. M., Yang, W. S., Morrison, B., 3rd, and
Stockwell, B.R. (2012) Ferroptosis: an iron-dependent
form of nonapoptotic cell death, Cell, 149, 1060-1072,
https://doi.org/10.1016/j.cell.2012.03.042.
22. Berndt, C., Alborzinia, H., Amen, V. S., Ayton, S.,
Barayeu, U., Bartelt, A., Bayir, H., Bebber, C. M.,
Birsoy, K., Bottcher, J. P., Brabletz, S., Brabletz, T.,
Brown, A.R., Brune,B., Bulli,G., Bruneau,A., Chen,Q.,
DeNicola, G. M., Dick, T. P., Distefano, A., Dixon,
S. J., Engler, J. B., Esser-von Bieren, J., Fedorova, M.,
Friedmann Angeli, J. P., Friese, M. A., Fuhrmann,
D. C., Garcia-Saez, A. J., Garbowicz, K., Gotz, M.,
Gu, W., Hammerich, L., Hassannia, B., Jiang, X.,
Jeridi, A., Kang, Y. P., Kagan, V. E., Konrad, D. B.,
Kotschi, S., Lei, P., Le Tertre, M., Lev, S., Liang, D.,
Linkermann, A., Lohr, C., Lorenz, S., Luedde, T.,
Methner, A., Michalke, B., Milton, A. V., Min, J.,
Mishima, E., Muller, S., Motohashi, H., Muckenthaler,
M. U., Murakami, S., Olzmann, J. A., Pagnussat, G.,
Pan, Z., Papagiannakopoulos, T., Pedrera Puentes, L.,
Pratt, D. A., Proneth, B., Ramsauer, L., Rodriguez, R.,
Saito,Y., Schmidt,F., Schmitt,C., Schulze,A., Schwab,A.,
Schwantes, A., Soula, M., Spitzlberger, B., Stockwell,
B. R., Thewes, L., Thorn-Seshold, O., Toyokuni, S.,
Tonnus, W., Trumpp, A., Vandenabeele, P., Vanden
Berghe, T., Venkataramani, V., Vogel, F. C. E., von
Karstedt, S., Wang, F., Westermann, F., Wientjens, C.,
Wilhelm, C., Wolk, M., Wu, K., Yang, X., Yu, F.,
Zou, Y., and Conrad, M. (2024) Ferroptosis in
health and disease, Redox Biol., 75, 103211, https://
doi.org/10.1016/j.redox.2024.103211.
23. Stockwell, B. R. (2022) Ferroptosis turns 10: emerg-
ing mechanisms, physiological functions, and ther-
apeutic applications, Cell, 185, 2401-2421, https://
doi.org/10.1016/j.cell.2022.06.003.
24. Yang, W. S., SriRamaratnam, R., Welsch, M. E.,
Shimada, K., Skouta, R., Viswanathan, V. S., Cheah,
J.H., Clemons, P.A., Shamji, A.F., Clish, C.B., Brown,
L. M., Girotti, A. W., Cornish, V. W., Schreiber, S. L.,
and Stockwell, B. R. (2014) Regulation of ferroptot-
ic cancer cell death by GPX4, Cell, 156, 317-331,
https://doi.org/10.1016/j.cell.2013.12.010.
25. Lyamzaev, K. G., Panteleeva, A. A., Simonyan, R. A.,
Avetisyan, A.V., and Chernyak, B.V. (2023) Mitochon-
drial lipid peroxidation is responsible for ferroptosis,
Cells, 12, 611, https://doi.org/10.3390/cells12040611.
26. Huan, H., Lyamzaev, K. G., Panteleeva, A. A., and
Chernyak, B. V. (2024) Mitochondrial lipid peroxida-
tion is necessary but not sufficient for induction of
ferroptosis, Front. Cell Dev. Biol., 12, 1452824, https://
doi.org/10.3389/fcell.2024.1452824.
27. Lyamzaev, K. G., Huan, H., Panteleeva, A. A.,
Simonyan, R.A., Avetisyan, A.V., and Chernyak, B.V.
(2024) Exogenous iron induces mitochondrial lipid
peroxidation, lipofuscin accumulation, and ferropto-
sis in H9c2 cardiomyocytes, Biomolecules, 14, 730,
https://doi.org/10.3390/biom14060730.
28. Lyamzaev, K. G., Panteleeva, A. A., Simonyan, R. A.,
Avetisyan, A. V., and Chernyak, B.V. (2023) The criti-
cal role of mitochondrial lipid peroxidation in ferro-
ptosis: insights from recent studies, Biophys. Rev., 15,
875-885, https://doi.org/10.1007/s12551-023-01126-w.
29. Pap, E. H., Drummen, G. P., Winter, V. J., Kooij, T. W.,
Rijken, P., Wirtz, K. W., Op den Kamp, J. A., Hage,
W. J., and Post, J. A. (1999) Ratio-fluorescence mi-
croscopy of lipid oxidation in living cells using C11-
BODIPY(581/591), FEBS Lett., 453, 278-282, https://
doi.org/10.1016/S0014-5793(99)00696-1.
30. Malavolta, M., Giacconi, R., Piacenza, F., Strizzi, S.,
Cardelli, M., Bigossi, G., Marcozzi, S., Tiano, L.,
Marcheggiani, F., Matacchione, G., Giuliani, A.,
Olivieri, F., Crivellari, I., Beltrami, A. P., Serra, A.,
Demaria, M., and Provinciali, M. (2022) Simple de-
tection of unstained live senescent cells with imag-
ing flow cytometry, Cells, 11, 2506, https://doi.org/
10.3390/cells11162506.