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Abstract—Activation of lipid peroxidation (LPO) in the mitochondria of rat H9c2 cardiomyoblasts and human
fibroblasts by the cystine transport inhibitor erastin or glutathione peroxidase 4 inhibitor RSL3 was accom-
panied by rapid (18 h) accumulation of lipofuscin. The mitochondria-targeted antioxidant SkQ1 and redox
mediator methylene blue, which prevents the formation of reactive oxygen species (ROS) in the mitochondrial
respiratory chain complex I, blocked both mitochondrial LPO and lipofuscin accumulation. These data indi-
cate that mitochondrial LPO serves as a driving force for the accelerated accumulation of lipofuscin in cells.
Rapid (24 h) lipofuscin formation was observed in isolated heart mitochondria in the presence of iron ions.
It was significantly accelerated by ROS generated in the respiratory chain complex I and blocked by SkQ1.
The question of whether oxidized components of mitochondria serve as a source for lipofuscin formation in
cells remains open. The results obtained suggest possible application of mitochondria-targeted compounds in
the treatment of diseases associated with excessive lipofuscin accumulation.
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INTRODUCTION

Lipofuscin (LF) is insoluble pigment aggregates
that accumulate in cells during aging. LF was first de-
scribed by the Danish physician and histologist Adolf
Hannover [1], although its association with aging had
not been recognized until the late nineteenth century.
LF is composed mainly of highly oxidized proteins,
with smaller amounts of lipids, carbohydrates, and
nucleic acids, and contains metal ions, including iron,
which determines its involvement in oxidative pro-
cesses [2]. The composition of LF varies considerably
across different types of cells; its analysis is complicat-
ed by extensive covalent cross-linking of constituent
macromolecules. In a body, LF primarily accumulates
in postmitotic cells, such as neurons and cardiomy-
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ocytes. In actively phagocytizing cells, in particular,
macrophages [3] and retinal pigment epithelium
(RPE) cells [4], a substantial fraction of LF originates
from the endocytosed material. For example, in RPE
cells that phagocytize fragments of retinal-containing
photoreceptors, the major LF component is a retinal
dimer conjugated with ethanolamine (A2E). Accumu-
lation of LF in RPE cells has been implicated in the
development of age-related macular degeneration [5].

In cells, LF is found in the cytosol and endosomal
compartments. It is believed to be generated by oxida-
tion of various cellular constituents and delivered to
the lysosomes via autophagy [6]. Once inside the lyso-
somes, LF is mostly resistant to degradation but may
undergo modifications and even “grow” by reacting
with neighboring proteins through reactive surface
groups [6]. Inhibition of lysosomal proteolytic activity
in vivo results in LF accumulation in multiple organs [7].
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Mitochondria have been proposed as one of the prin-
cipal sources of LF [8]. Proteomic analysis of brain-
derived LF [9] identified several mitochondrial pro-
teins along with proteins from other cellular com-
partments, although the available data are insuffi-
cient to establish mitochondria as the primary site
of LF origin. Like other protein aggregates, LF can
inhibit the proteasomal activity, and its accumulation
in lysosomes may impair their function. However,
whether LF plays an active role in the age-related
cellular damage remains unknown.

The stimulation of autophagy in aged rats re-
duced the LF content, which correlated with a de-
crease in the proportion of cardiomyocytes displaying
senescence markers [10], although no causality could
be reliably established in such experiments. Exoge-
nously applied purified LF impaired the functioning
of cardiomyocytes [11] and RPE cells [12] and even
induced the death of fibroblasts [13]. The age-associ-
ated LF accumulation has been documented in var-
ious organs, including the heart [14]. Thus, smaller
short-lived species of primates were found to dis-
play much faster LF accumulation in the heart [15].
Examination of human cardiac tissue from individ-
uals aged 20 to 97 revealed that LF levels correlat-
ed with aging but did not depend on body weight
or cause of death [16]. LF accumulation during both
replicative and stress-induced senescence is a major
biomarker of aging in cultured cells and is widely
used in research [17].

Lipid peroxidation (LPO), in particular, oxidation
of polyunsaturated fatty acids in membrane phospho-
lipids, is a key driver of LF accumulation. Thus, iron
chelators capable of penetrating into cells and sup-
pressing LPO, prevented LF accumulation in vitro [18]
and in vivo [19]. Malondialdehyde, a major LPO prod-
uct, can react with one or two amino groups of mac-
romolecules with the formation of Schiff bases, which
undergo Maillard-type intramolecular rearrangements
and account for LF fluorescence at 450-470 nm (with
the excitation maximum at 360-390 nm) [20]. The for-
mation of aldehyde bridges is a critical mechanism
of protein-protein and protein-lipid cross-linking
during the generation and progressive “growth” of
LF aggregates.

Over the past decade, the studies of LPO have
been greatly stimulated by the discovery of ferropto-
sis, a form of regulated cell death that depends on
the iron-catalyzed LPO in cellular membranes [21].
It has been found that ferroptosis contributes to nu-
merous pathologies associated with oxidative stress,
including ischemic injury of the heart, brain, and
kidneys, as well as neurodegenerative disorders [22].
The interest in ferroptosis has been further fueled by
the ability of its inducers to act as anticancer agents
capable of overcoming tumor resistance linked to the
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suppression of apoptosis [23]. The first identified spe-
cific inducer of ferroptosis was erastin, an inhibitor
of the cystine transporter SLC7A11 required for glu-
tathione biosynthesis [21]. A more selective and po-
tent inducer is the glutathione peroxidase 4 (GPX4)
inhibitor RSL3 [24], whose action does not depend on
glutathione levels and, therefore, is less constrained
by the cellular metabolic context compared to erastin
or inhibitors of glutathione biosynthesis.

Our recent work has shown that LPO in the in-
ner mitochondrial membrane (mitoLPO) is essential
for ferroptosis [25-28]. We found that erastin triggers
mitoLPO, which precedes ferroptotic cell death. The
mitochondria-targeted antioxidant SkQ1 [10-(6-plas-
toquinonyl)decyltriphenylphosphonium bromide]
prevented both mitoLPO and erastin-induced cell
death. A similar effect was observed for methylene
blue (MB), a well-known redox mediator that allows
to bypass the electron transfer through the mito-
chondrial respiratory complex I, thereby suppressing
formation of reactive oxygen species (ROS) [29]. We
demonstrated that exogenous iron, supplied as am-
monium ferric citrate, induced rapid (within 24 h)
LF accumulation in rat H9c2 cardiomyoblasts, preced-
ing ferroptosis [27]. In this model, both LF accumu-
lation and mitochondrial LPO were blocked by SkQ1
and MB, highlighting the importance of mitoLPO in
the LF formation.

Here, we investigated LF accumulation in H9c2
cells and human fibroblasts treated with erastin and
RSL3. Our findings confirm that mitoLPO can drive
rapid LF accumulation in cells.

MATERIALS AND METHODS

Cell cultures. Rat H9c2 cardiomyoblasts (ECACC;
cat. no. 88092904) and primary human subcutaneous
fibroblasts (Biobank Shared Research Facility, Re-
search Centre for Medical Genetics, Moscow, Russia)
were cultured in Dulbecco’s Modified Eagle’s Medi-
um (DMEM) (Gibco, USA) supplemented with 2 mM
L-glutamine, 10% fetal bovine serum (FBS) (HyClone,
USA), 100 U/mL penicillin, and 100 U/mL streptomycin
(Gibco). Cell viability was assessed using the CellTit-
erBlue® assay (Promega, USA) according to the man-
ufacturer’s protocol. Optical density at 590 nm was
measured with a Fluoroskan Ascent FL microplate
reader (Thermo Labsystems, USA).

MitoLPO assay. MitoLPO was assessed using the
ratiometric fluorescent probe MitoCLox derived from
the well-established indicator C11-BODIPY581/591,
which specifically reacts with lipid peroxyl radicals,
resulting in the shift in its fluorescence spectrum [29].
The cells were incubated with 5 uM erastin or 100 nM
RSL3 for 18 h in the presence of 200 nM MitoCLox.
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After incubation, the cells were detached using tryp-
sin/EDTA, centrifuged (900g, 5 min, 4°C), resuspended
in 50 yL PBS, and analyzed by imaging flow cytom-
etry using an Amnis FlowSight cytometer (Luminex
Corporation, USA) with excitation at 488 nm and
emission at 505-560 nm (Channel 2, Ch2) and 595-
642 nm (Channel 4, Ch4). Oxidation of MitoCLox was
quantified as the Ch2/Ch4 fluorescence intensity ra-
tio. The data were processed using the Amnis IDEAS®
software version 6.2 (Luminex). At least 4000 events
were recorded per sample. In cases where signal dis-
tribution deviated significantly from Gaussian, gat-
ing procedures were applied for accurate data eval-
uation.

Measurement of cellular LF content. The cells
were seeded in 12-well plates. After incubation for
24 h, 5 yM erastin or 100 nM RSL3 were added, ei-
ther alone or in combination with 100 nM SkQ1,
250 nM MB, 100 uM deferoxamine (DFO), or 200 uM
Trolox. LF autofluorescence was detected by flow
cytometry (excitation at 488 nm, emission at 505-
560 nm, Ch2) [30]. The data were analyzed with the
Amnis IDEAS® 6.2 software.

The LF content in H9c2 cells was additionally
assessed after seeding the cells in 6-well plates for
18 h, followed by treatment with 100 nM RSL3, with
or without 100 nM SkQ1, 250 nM MB, 100 uM DFO, or
200 pM Trolox. After 18-h incubation, the cells were
lysed in 1% SDS, and fluorescence spectra were re-
corded at 500-650 nm (excitation at 405 nm) in a
FluoroMax-3 spectrofluorometer (Horiba Scientific,
Japan); fluorescence spectra of 1% SDS solution were
subtracted from the recorded spectra.

Measurement of cytosolic and mitochondrial
ROS. Cytosolic ROS levels were determined using
dichlorodihydrofluorescein diacetate (H,DCFDA) (In-
vitrogen Life Technologies, USA), while mitochon-
drial ROS were measured with MitoSOX (Invitrogen
Life Technologies). The cells were treated with 5 uM
erastin or 100 nM RSL3 for 18 h, followed by incu-
bation in fresh medium containing 1.8 uM H,DCF-DA
or 1 yM MitoSOX for 30 min. Fluorescence was mea-
sured using an Amnis FlowSight cytometer with exci-
tation at 488 nm and emission collected in Ch2.

LF content in isolated mitochondria. Mitochon-
dria were isolated from rat hearts in a buffer con-
taining 5 mM MOPS-KOH (pH 7.4), 250 mM sucrose,
1 mM EGTA, and 0.5 mg/mL bovine serum albumin.
Cardiac tissue was minced in ice-cold isolation buffer
(10 mL/g tissue) and homogenized in a Potter glass
homogenizer for 1-2 min. The homogenates were di-
luted to 20 mL/g tissue and centrifuged at 600g for
10 min. The supernatants were collected and centri-
fuged at 12,000g for 10 min. The pellets were resus-
pended in a minimal volume of the buffer, re-homog-
enized, diluted with 20 mL of the isolation buffer, and
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centrifuged again (10 min, 12,000g). The final pellets
were resuspended and stored on ice.

Mitochondria were incubated in a medium con-
taining 50 pM FeSO,, 5 mM glutamate, 5 mM malate,
and 10 pM rotenone at 37°C with constant stirring [1].
Protein concentration was adjusted to 0.4 mg/mL (ac-
cording to Bradford assay). LF fluorescence was mea-
sured after the mitochondria were lysed in 1% SDS
at 365-600 nm (excitation at 360 nm) with a Fluoro-
Max-3 spectrofluorometer. MitoCLox oxidation was
assessed as described previously [30].

Statistical data processing. The data are present-
ed as mean + standard deviation (SD) from at least
three independent experiments and compared using
one-way ANOVA. Statistical significance was evaluat-
ed with the Prism 10.0 software (GraphPad Software,
USA). The differences were considered significant at
**Ek% p < 0.0001, *** p <0.001, ** 0.001 < p < 0.05, and
* p < 0.05.

RESULTS

Previously, we demonstrated that erastin induced
mitoLPO in SV40-transformed MRC5 human lung fi-
broblasts [25]. The data presented in Fig. 1 show that
mitoLPO (measured using MitoCLox) also occurred in
rat H9c2 cardiomyoblasts and non-transformed pri-
mary human dermal fibroblasts treated with either
erastin or RSL3. In all models employed, mitoLPO
preceded necrotic cell death. The mitochondria-tar-
geted antioxidant SkQ1 and the redox mediator MB
efficiently prevented both mitoLPO and cell death
(Fig. 1). Similarly, the cell-permeable iron chelator
DFO and the lipophilic antioxidant Trolox exerted
protective effects.

Measuring the levels of mitochondrial ROS with
the MitoSOX probe revealed that ROS accumulation
in our cellular models occurred concomitantly with
mitoLPO following the treatment with either erastin
or RSL3 (Fig. 2a). We also observed ROS accumula-
tion in the cytoplasm, as assessed with H,DCFDA
(Fig. 2b). In both compartments, ROS accumulation
was prevented by the same agents that inhibited
mitoLPO.

LF accumulation assessed by flow cytometry
based on its broad autofluorescence spectrum (505-
560 nm), was observed within the same 18-h time-
frame as mitoLPO and preceded cell death (Fig. 3).
SkQ1 and MB, as well as DFO and Trolox, completely
blocked LF accumulation. The measurements of flu-
orescence spectra in cell lysates following cell dis-
ruption with a detergent confirmed LF accumulation
(Fig. 3, d and e). Fluorescence microscopy revealed no
formation of LF granules or preferential LF accumu-
lation in the mitochondria.
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Fig. 1. Erastin and RSL3 induced mitoLPO in rat H9c2 cardiomyoblasts (a) and primary human fibroblasts (b), as well
as cell death (c). Cells were incubated with 5 uM erastin or 100 nM RSL3, alone or in combination with 100 nM SkQ1,
250 nM MB, 100 uM DFO, or 200 pM Trolox for 18 h. MitoLPO was assessed by adding ratiometric fluorescent probe
MitoCLox to the medium. The ratio of green (Ch2) to red (Ch4) fluorescence was calculated using Amnis IDEAS® 6.2
software. Statistical significance: **** p < 0.0001 and *** p < 0.001, differences between cells treated with erastin or RSL3
and all other treatment conditions (n = 4-6).
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Fig. 2. Erastin and RSL3 induced the formation of (a) mitochondrial superoxide anion (cell staining with 1 pM MitoSOX
for 30 min) and (b) cytosolic ROS (cells staining with 1.8 uM H,DCFDA for 30 min) in H9c2 cardiomyoblasts and primary
human fibroblasts. In both cases, the cells were preincubated for 18 h with 5 uM erastin or 100 nM RSL3, alone or in
combination with 100 nM SkQ1, 250 nM MB, 100 uM DFO, or 200 pM Trolox. The data are shown as mean fluorescence
intensity (% of control). Statistical significance: **** p < 0.0001; *** p < 0.001; ** 0.001 < p < 0.05; * p < 0.05 vs. cells treated

with erastin or RSL3.

Interestingly, two distinct subpopulations differ-
ing markedly in the level of mitoLPO were observed
in the RSL3-treated fibroblasts (Fig. 1). A similar het-
erogeneity in mitoLPO had previously been detect-
ed in SV40-transformed MRC5 fibroblasts exposed
to erastin [25]. In H9c2 cells, the heterogeneity was
considerably less pronounced (Fig. 1), and the LF ac-
cumulation assay revealed population heterogeneity
only in fibroblasts (Fig. 3c). The nature of this het-
erogeneity remains unclear.

In our previous studies [25, 27, 28], we investi-
gated LPO in isolated rat heart mitochondria using
MitoCLox. It was found that LPO occurred only in
the presence of ferrous ions (Fe?*), while addition of
the complex I inhibitor rotenone in the presence of
NAD-linked substrates (glutamate and malate) mark-
edly stimulated oxidation, consistent with the LPO in-
duction by ROS generated in complex I. Fluorescence
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measurements after disruption of the mitochondria
with a detergent demonstrated detectable LF accumu-
lation within 24 h at 37°C, which further increased
after incubation for additional 24 h (Fig. 4a). Notably,
under these conditions, LPO developed within 1-2 h
(Fig. 4b), substantially preceding LF accumulation.
No LF accumulation was observed in the absence of
Fe?* ions. Rotenone promoted LF formation, whereas
SkQ1 blocked it, thus highlighting the role of com-
plex I-derived ROS (Fig. 4a).

Earlier studies [31] reported that the LF for-
mation in the mitochondria isolated from rat liver
occurred much faster than in the lysosomes or mi-
crosomes (membrane vesicles derived from disrupt-
ed endoplasmic reticulum). However, preparations of
liver mitochondria obtained by differential centrif-
ugation (as in [31]) are unavoidably contaminated
with peroxisomes, which contain lipolytic enzymes.
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This contamination may explain the detection of LF
in the supernatant following mitochondrial sedimen-
tation at 12,000g [31]. The concerns about peroxiso-
mal contamination also extend to a later study [32],
which reported accelerated LF formation in liver mi-

tochondria upon heating or UV irradiation. In our ex-
periments on heart mitochondria, the risk of peroxiso-
mal contamination was minimal. The use of detergent
disruption in these experiments allowed LF quanti-
fication independently of its membrane association.
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DISCUSSION

The data presented in Figs. 1 and 3 demonstrate
that the activation of mitoLPO by the cystine trans-
port inhibitor erastin or the GPX4 inhibitor RSL3
was accompanied by LF accumulation. The mito-
chondria-targeted antioxidant SkQ1 and the redox
mediator MB, which prevents ROS formation in com-
plex I of the mitochondrial respiratory chain, blocked
both mitoLPO and LF accumulation. Previously, we
showed [27] that the exogenous iron-induced LF ac-
cumulation in H9c2 cells was also inhibited by SkQ1
and MB. These findings indicate that mitoLPO acts as
a driving force of accelerated LF formation. Consis-
tent with this conclusion, another mitochondria-tar-
geted antioxidant, MitoTEMPO, was reported to sup-
press LF accumulation in fibroblasts chronically (for
10 days) treated with the prooxidant paraquat [33].
In the same model, the inhibitor of mitochondrial
fragmentation and mitophagy Mdivi-1 promoted LF
accumulation, further indicating the critical role of
mitochondria in LF biogenesis.

It should be noted that in our experiments, SkQ1
and MB suppressed ROS accumulation in both mito-
chondria and the cytoplasm (Fig. 2). Hence, we can-
not exclude the possibility that ROS generated in the
mitochondria contribute to the LF formation along-
side LPO products. At the same time, one of the LF
inducers used in our study was RSL3, which specifi-
cally blocks a defense mechanism against LPO. While
erastin can disrupt multiple antioxidant systems
through glutathione depletion, GPX4 inhibition selec-
tively promotes LPO without impairing other cellular
defenses. Further supporting the view that cellular
ROS accumulation results from LPO, DFO (an iron
chelator that selectively blocks LPO) prevented ROS
accumulation (Fig. 2).

Our data show an important role of mitochon-
dria in the LF formation but do not prove that mito-
chondria themselves constitute the primary substrate
for LF, as fluorescence microscopy revealed no de-
tectable LF accumulation in the mitochondria in our
models. However, it is well established that oxidized
mitochondria are targeted for mitophagy [34], so
LF accumulation in the mitochondria may be tran-
sient. Experiments with isolated rat heart mitochon-
dria (Fig. 4) demonstrated rapid LF formation that
was markedly accelerated by ROS generated in com-
plex I of the respiratory chain. Additional evidence
for the mitochondrial involvement in LF biogenesis
comes from the experiments where selective inhibi-
tion of the mitochondrial protease Lon in HeLa cells
promoted LF accumulation under chronic paraquat
treatment [33]. Nevertheless, it remains possible that
LPO and protein oxidation in mitochondria trigger LF
formation from other cellular components.
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LF accumulation occurs not only during physi-
ological aging but also in various diseases, such as
age-related macular degeneration (AMD) [35], Star-
gardt disease (the most common form of inherited
juvenile macular degeneration) [36], Alzheimer’s dis-
ease [37], Parkinson’s disease [38], and other neuro-
degenerative disorders [39]. The pathogenic role of
LF has been best established in AMD [5] and Star-
gardt disease [40], in which LF-containing retinal-
dehyde dimers (A2E) contribute to the RPE damage
via photodynamic effects. Mitochondrial dysfunction
has been implicated in AMD pathogenesis [41], and
SkQ1 demonstrated therapeutic efficacy in this con-
text [42, 43]. Remofuscin (soraprazan), the first and
so far, only pharmacological inhibitor of LF accumu-
lation, has been proposed for the treatment of Star-
gardt disease [40]. Although the precise mechanism
of its action remains unclear, the studies in Caenor-
habditis elegans showed that remofuscin reduced
age-dependent LF accumulation and increased nema-
tode lifespan by 20% [44]. LF-loaded neurons appear
to be more susceptible to pathological changes in the
Alzheimer’s [39] and Parkinson’s [45] diseases. The
role of mitochondrial dysfunction in neurodegener-
ation is widely discussed [46]. SkQ1 significantly
attenuated progression of the Alzheimer’s [47] and
Parkinson’s [32] disease symptoms in various animal
models.

Taken together, our results suggest that mito-
chondria-targeted compounds can reduce LF accu-
mulation in cells, providing a rationale for their po-
tential therapeutic application in a broad spectrum
of conditions associated with excessive LF deposition.

Abbreviations

DFO deferoxamine

LF lipofuscin

MB methylene blue
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