
ZINOVKIN, KONDRATENKO1894
BIOCHEMISTRY (Moscow) Vol. 90 No. 12 2025
58. Hangas, A., Aasumets, K., Kekäläinen, N. J.,
Paloheinä, M., Pohjoismäki, J. L., Gerhold, J. M., and
Goffart,S. (2018) Ciprofloxacin impairs mitochondri-
al DNA replication initiation through inhibition of
topoisomerase 2, Nucleic Acids Res, 46, 9625-9636,
https://doi.org/10.1093/nar/gky793.
59. Jiang, T., Kustermann, S., Wu, X., Zihlmann, C.,
Zhang, M., Mao, Y., Wu, W., and Xie, J. (2023) Mi-
tochondrial dysfunction is underlying fluoroquino-
lone toxicity: an integrated mitochondrial toxicity
assessment, Mol. Cell Toxicol., 19, 333-342, https://
doi.org/10.1007/s13273-022-00263-9.
60. Reinhardt, T., El Harraoui, Y., Rothemann, A., Jauch,
A.T., Müller-Deubert,S., Köllen, M.F., Risch,T., Jacobs,
L. J., Müller,R., Traube, F. R., Docheva, D., Zahler, S.,
Riemer,J., Bach, N.C., and Sieber, S. A. (2025) Chem-
ical proteomics reveals human off-targets of fluoro-
quinolone induced mitochondrial toxicity, Angew.
Chem. Int. Ed., 64, e202421424, https://doi.org/10.1002/
anie.202421424.
61. Hou, P., Wang, S., Shao, Z., Tang, Y., Wang, W.,
Fang, L., Lin, B., Zhu, Y., Xu, R.-H., and Li, J. (2025)
Off-target interactions of vancomycin with vascular
wall involving elastin-induced self-assembly, Anal.
Chem., 97, 7107-7117, https://doi.org/10.1021/acs.anal-
chem.4c06259.
62. Li, X., Li, H., Li, S., Zhu, F., Kim, D. J., Xie, H., Li, Y.,
Nadas, J., Oi, N., Zykova, T. A., Yu, D. H., Lee, M.-H.,
Kim, M.O., Wang,L., Ma,W., Lubet, R.A., Bode, A.M.,
Dong, Z., and Dong, Z. (2012) Ceftriaxone, an FDA-
approved cephalosporin antibiotic, suppresses lung
cancer growth by targeting Aurora B, Carcinogenesis,
33, 2548-2557, https://doi.org/10.1093/carcin/bgs283.
63. McGowan, J.V., Chung,R., Maulik, A., Piotrowska, I.,
Walker, J. M., and Yellon, D. M. (2017) Anthracy-
cline chemotherapy and cardiotoxicity, Cardiovasc.
Drugs Ther., 31, 63-75, https://doi.org/10.1007/s10557-
016-6711-0.
64. Wallace, K.B., Sardão, V. A., and Oliveira, P. J. (2020)
Mitochondrial determinants of doxorubicin-induced
cardiomyopathy, Circ. Res., 126, 926-941, https://
doi.org/10.1161/CIRCRESAHA.119.314681.
65. Cappetta, D., De Angelis, A., Sapio, L., Prezioso, L.,
Illiano,M., Quaini,F., Rossi,F., Berrino,L., Naviglio,S.,
and Urbanek, K. (2017) Oxidative stress and cellu-
lar response to doxorubicin: a common factor in
the complex milieu of anthracycline cardiotoxici-
ty, Oxid. Med. Cell Longev., 2017, 1521020, https://
doi.org/10.1155/2017/1521020.
66. Chelombitko, M.A., Morgunova, G.V., Strochkova, N.Y.,
Zinovkin, R.A., Pavlyuchenkova, A.N., Kondratenko,
N.D., and Lyamzaev, K.G. (2023) Comparative analy-
sis of cell senescence induced by the chemotherapeu-
tic agents doxorubicin, cisplatin and arsenic trioxide
in human myoblasts MB135, Adv. Gerontol., 13, 16-25,
https://doi.org/10.1134/s2079057024600010.
67. Bientinesi, E., Lulli, M., Becatti, M., Ristori, S.,
Margheri, F., and Monti, D. (2022) Doxorubicin-
induced senescence in normal fibroblasts promotes
in vitro tumour cell growth and invasiveness: the role
of quercetin in modulating these processes, Mech.
Ageing Dev., 206, 111689, https://doi.org/10.1016/
j.mad.2022.111689.
68. Sun,T., Zhang, L., Feng,J., Bao, L., Wang,J., Song,Z.,
Mao,Z., Li,J., and Hu,Z. (2022) Characterization of cel-
lular senescence in doxorubicin-induced aging mice,
Exp. Gerontol., 163, 111800, https://doi.org/10.1016/
j.exger.2022.111800.
69. Clayton, Z. S., Hutton, D. A., Mahoney, S. A., and
Seals, D. R. (2021) Anthracycline chemotherapy-
mediated vascular dysfunction as a model of accel-
erated vascular aging, Aging Cancer, 2, 45-69, https://
doi.org/10.1002/aac2.12033.
70. Hecht, S. M. (2000) Bleomycin: new perspectives on
the mechanism of action, J. Nat. Prod., 63, 158-168,
https://doi.org/10.1021/np990549f.
71. Yao, Y.-X., Lu,X., Li,Z., Liao, H.-Y., Liu, Z.-B., Zhao,H.,
Wang, H., Xu, D.-X., and Tan, Z.-X. (2025) Mitochon-
drial dysfunction-associated cellular senescence is
partially involved in bleomycin-induced pulmonary
fibrosis in mice, Toxicol. Appl. Pharmacol., 504,
117524, https://doi.org/10.1016/j.taap.2025.117524.
72. Aoshiba, K., Tsuji, T., and Nagai, A. (2003) Bleomy-
cin induces cellular senescence in alveolar epithe-
lial cells, Eur. Respir. J., 22, 436-443, https://doi.org/
10.1183/09031936.03.00011903.
73. Aoshiba, K., Tsuji, T., Kameyama, S., Itoh, M.,
Semba, S., Yamaguchi, K., and Nakamura, H. (2013)
Senescence-associated secretory phenotype in a
mouse model of bleomycin-induced lung injury, Exp.
Toxicol. Pathol., 65, 1053-1062, https://doi.org/10.1016/
j.etp.2013.04.001.
74. Chen, P., Guo,H., Chen,J., and Fu,Y. (2016) The che-
motherapeutic drug boanmycin induces cell senes-
cence and senescence-associated secretory phenotype
factors, thus acquiring the potential to remodel the
tumor microenvironment, Anticancer Drugs, 27, 84-
88, https://doi.org/10.1097/cad.0000000000000304.
75. Gao, N., Shang, B., Zhang, X., Shen, C., Xu, R., Xu, H.,
Chen, R., and He, Q. (2011) Potent antitumor actions
of the new antibiotic boningmycin through induc-
tion of apoptosis and cellular senescence, Antican-
cer Drugs, 22, 166-175, https://doi.org/10.1097/cad.
0b013e3283409bee.
76. Wu, H.-C., Rérolle, D., Berthier, C., Hleihel, R.,
Sakamoto,T., Quentin,S., Benhenda,S., Morganti,C.,
Wu, C., Conte, L., Rimsky, S., Sebert, M., Clappier, E.,
Souquere, S., Gachet, S., Soulier, J., Durand, S.,
Trowbridge, J. J., et al. (2021) Actinomycin D targets
NPM1c-primed mitochondria to restore PML-driven
senescence in AML therapy, Cancer Discov., 11, 3198-
3213, https://doi.org/10.1158/2159-8290.CD-21-0177.