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Abstract— Antibiotics are certainly the most important agents in the fight against human and animal bac-
terial infections. Widespread use of antibiotics has a positive impact on the treatment of infectious diseases 
but may be accompanied by serious side effects. Clinical aspects of these side effects are well understood, 
but nonspecific molecular targets are not fully recognized. It is generally known that many antibiotics can 
damage mitochondria, intracellular organelles responsible for aerobic metabolism as well as regulating a 
number of important processes, including cellular redox balance and inflammatory responses. Mitochondrial 
dysfunction commonly leads to the development of oxidative stress and inflammation, which are known 
stimuli of cellular senescence. On the other hand, the same stimuli could induce death of senescent cells. 
Thus, mitotoxic antibiotics could influence both the cellular senescence process and elimination of senescent 
cells. The effect of antitumor antibiotics on the induction of cell aging has been studied in detail, but the effect 
of antibacterial antibiotics on this process is still essentially unknown. This review aims to draw attention of 
the researchers to the possibility of accelerated cellular aging induced by common antibacterial antibiotics 
and to discuss potential mechanisms of this process. 

DOI:  10.1134/S0006297925602758 

Keywords:  antibiotics, side effects, cellular senescence, mitochondria, reactive oxygen species 

* To whom correspondence should be addressed.

INTRODUCTION

Since their discovery, antibiotics have remained 
indispensable tools in the fight against bacterial in-
fections, dramatically reducing infection-related mor-
tality and contributing substantially to the increased 
life expectancy worldwide. However, their use is 
accompanied by various non-specific effects, physi-
ological features of which are well documented [1]. 
At  least part of these side effects could be attribut-
ed to the evolutionary relationship between bacteria 
and mitochondria, which originated from the ancient 
alphaproteobacteria  [2]. Consequently, many antibi-
otics that target bacterial replication or translation 
also induce mitochondrial dysfunction [3]. The down-

stream consequences of mitochondrial dysfunction, 
such as oxidative stress and inflammation, could, in 
turn, trigger cell cycle arrest and drive cells into a 
state of cellular senescence (CS).

Although numerous individual studies and re-
views have addressed antibiotic side effects and the 
phenomenon of CS, the relationship between these 
two events remains largely unexplored. The primary 
exception is antitumor antibiotics, which are known 
to induce CS through activation of the cellular DNA 
damage response. This review briefly outlines current 
understanding of the mechanisms of CS development, 
primary and non-specific targets of antibacterial an-
tibiotics, and analyzes the limited available evidence 
regarding their ability to promote CS or eliminate se-
nescent cells in human and animal systems.
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CELLULAR SENESCENCE

Cellular aging (senescence) is defined as a sta-
ble cell cycle arrest accompanied by characteristic 
phenotypic changes  [4] (Fig.  1). CS is intimately in-
volved in the processes such as embryogenesis, tis-
sue regeneration, suppression of carcinogenesis, and 
aging. As an antitumor mechanism, CS prevents pro-
liferation of the potentially cancerous cells. Activation 
of the tumor suppressor pathways p53/p21CIP1 and 
p16INK4A/pRB plays a central role in the development 
of CS [5, 6].

Aging cells remain viable, but their metabolic 
and transcriptomic activities change, and they devel-
op a complex secretory phenotype (senescence-asso-
ciated secretory phenotype, SASP). This phenotype is 
characterized by the synthesis of cytokines and in-
flammatory mediators, proteases, and growth factors 
(such as IL-1α, IL-1β, IL-6, IL-8, and MMP) [7]. Senes-
cent cells can be eliminated by immune cells, this 
process contributes to the tissue remodeling and re-
generation. However, under certain conditions, aging 
cells are not completely removed, which contributes 
to the development of pathology [8]. Factors secreted 
by the senescent cells can affect neighboring cells in 
a paracrine manner and disturb normal tissue func-
tions.

Cellular aging occurs in response to various en-
dogenous and exogenous stimuli. There are two main 
types of CS: replicative and stress-induced (Fig.  1). 
In  the replicative aging, a cell that has divided many 
times with shortened telomeres loses its ability to 
proliferate, leading to the complete halt in the cell 
cycle [9]. The stress-induced aging is caused by a wide 
range of factors, such as mitogenic signals, oncogene 
activation, radiation, oxidative and genotoxic stress, 
epigenetic changes, chromatin disorganization, proteo-
stasis disruption, mitochondrial dysfunction, inflam-
matory responses, tissue damage signals, chemothera-
peutic agents, and nutrient deprivation [10,  11]. Aging 
caused by DNA damage is triggered by a wide range of 
chemical compounds, as well as ionizing or UV radia-
tion. Depending on the intensity of DNA damage, the 
cell may die by apoptosis or progress to CS [12]. More 
than fifty compounds have been identified [13] that 
induce cellular aging, with the specific mechanism 
of cellular aging development varying for  different 
groups of substances.

The most important physiologically significant 
signs of CS are increase in the cell size, increase in 
the activity of senescence-associated β-galactosidase 
(SA-β-gal), accumulation of autofluorescent granules, 
and SASP [13] (Fig. 1). The increased autofluorescence 
and the SA-β-gal activity result from accumulation 

Fig. 1. Main pathways of cellular senescence (CS) induction and characteristics of senescent cells. ROS, reactive oxygen 
species; p53, p16Ink4a, p21CIP1, senescence protein markers; SA-β-Gal, senescence-associated beta-galactosidase; IL-1α, 
interleukin-1α; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-8, interleukin-8; MMPs, matrix metalloproteinases. Details are 
provided in the text.
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of  the excessive amounts of lysosomal components in 
cells. To date, dozens of phenotypes of stress-induced 
CS have been described, which partially overlap with 
each other [14]. These aging states can differ signifi-
cantly from each other and from the phenotype of 
replicative aging. At the same time, it is still unclear 
whether the cell cycle arrest constitutes the “true” 
CS. Essential characteristics of this “true” CS are also 
undefined.

ANTIBIOTICS: CLASSIFICATION 
AND MECHANISM OF ACTION

Antibiotics constitute a heterogeneous group of 
compounds belonging to various classes of chemical 
substances, each characterized by a unique structure 
and mechanism of action. Functionally, they are gen-
erally categorized into two types: bacteriostatic an-
tibiotics, which inhibit growth and reproduction of 
microorganisms, and bactericidal antibiotics, which 
kill bacterial cells. Although the term antibiotics 
originally referred exclusively to the substances of 
natural origin, it is now used more broadly to in-
clude semi-synthetic and fully synthetic antimicrobi-
al agents [15]. Based on the spectrum of their activi-
ty, antibiotics may be classified as narrow-spectrum, 
targeting specific groups of bacteria (e.g., vancomycin 
against Gram-positive organisms), or broad-spectrum, 
acting against a wide range of bacterial species (e.g., 
tetracyclines, cephalosporins). Furthermore, antibi-
otics can be categorized according to their chemical 
structure into classes such as β-lactams, aminoglyco-
sides, macrolides, tetracyclines, phenicols, glycopep-
tides, polymyxins, lincosamides, fluoroquinolones, 
and rifamycins, among others [16].

The primary targets of antibiotic action in bacte-
ria include synthesis of the cell wall, proteins, nucleic 
acids, mycolic acids, and folic acid (Table  1) [15,  17]. 
The table also lists ionophores, such as monensin, la-
salocid, and salinomycin, which disrupt intracellular 
ion homeostasis [18]. These ionophores are used in 
veterinary medicine.

Several bacterial-derived compounds that are 
also classified as antibiotics are widely used in can-
cer therapy. These include the anthracyclines (doxo-
rubicin, daunorubicin, epirubicin, and idarubicin), 
as well as bleomycin, dactinomycin, and mitomycin. 
Their anticancer activity is mediated through multi-
ple mechanisms, including: (i)  DNA alkylation (e.g., 
certain anthracyclines); (ii)  DNA intercalation (doxo-
rubicin, daunorubicin, actinomycin  D); (iii)  inhibition 
of topoisomerase  II (doxorubicin); (iv)  induction of 
DNA strand breaks (bleomycin)  [19]. The resulting 
DNA damage leads to cell cycle arrest and ultimately 
to tumor cell death [20].

Table 1. Mechanism of action of the main groups of 
antibiotics

Classification of antibiotics by mechanism of action

Cell wall synthesis 
inhibitors

• penicillins
• cephalosporins
• glycopeptides
• β-lactamase inhibitors
• carbapenems
• β-lactams
• polypeptides

Protein synthesis 
inhibitors

30S Subunit inhibitors
• aminoglycosides
• tetracyclines

50S Subunit inhibitors
• macrolides
• phenicols
• lincosamides
• oxazolidinone
• streptogramins

DNA synthesis 
inhibitors

• fluoroquinolones
• 5-nitroimidazoles

Folic acid synthesis 
inhibitors

• sulfonamides

Ionophores 
that disrupt ion 
conductivity

• carboxylic polyethers
• linear and cyclic peptides

NON-SPECIFIC TARGETS OF ANTIBIOTICS

Being small molecules (400-1200  Da), antibiotics 
have good bioavailability and effectively block vital 
bacterial functions in the tissues of the infected or-
ganism. On average, the low-molecular-weight com-
pounds can bind to 6-11 off-target molecules inside 
the cell in addition to their primary target [21]. An-
tibiotics can cause side effects of varying severity, 
which, according to the current data, are partly due 
to their effect on the human microbiota and partly 
to their interaction with non-specific cellular targets 
[22]. Clinical aspects of antibiotic side effects have 
been studied in great detail [1, 23], but nonspecific 
intracellular interactions are only partially under-
stood.

As noted above, many antibiotic-associated side 
effects arise from the evolutionary relationship be-
tween mitochondria and bacteria; mitochondria are 
currently believed to have originated from the ancient 
Alphaproteobacteria [2]. Consequently, numerous an-
tibiotics designed to target bacterial replication or 
translation also exhibit varying degrees of mitochon-
drial toxicity (Table  2), although not all have been 
experimentally shown to interact with nonspecific 
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Table 2. Nonspecific mitochondrial targets of selected antibiotics and their associated side effects

Antibiotics
Potential antibiotic 

target in mitochondria
Effect at the cellular level

Side effects at the 
organismal level

References

Oxazolidinones 50S ribosomal subunit inhibition of megakaryocyte 
maturation

thrombocytopenia, 
anemia

[28]

reduced COX-II production 
in  PBMCs

hyperlactatemia [29]

mitochondrial dysfunction 
in  optic nerve cells

optic neuropathy [30, 31]

Lincosamides 50S ribosomal subunit neuronal apoptosis neurotoxicity [32]

Phenicols 50S ribosomal subunit decreased transferrin receptor 
expression and ferritin synthesis

sideroblastic 
anemia

[33]

disruption of mitochondrial 
protein synthesis and 

subsequent impairment 
of  erythroid cell development

aplastic anemia [34]

Macrolides 50S ribosomal subunit neuronal apoptosis neurotoxicity [32]

cardiomyocyte apoptosis cardiotoxicity [35]

hepatocyte oxidative stress hepatotoxicity [35, 36]

Aminoglycosides 30S ribosomal subunit disruption of mitochondrial 
protein synthesis in cochlear 

cells

ototoxicity [36, 37]

renal tubular cell mitochondrial 
dysfunction

nephrotoxicity [38, 39]

Tetracyclines 30S ribosomal subunit mitochondrial dysfunction 
and  nerve cell death

neurotoxicity [32]

Fluoroquinolones gyrase/topoisomerase mitochondrial dysfunction 
and  oxidative stress in tenocytes

tendinopathy [40, 41]

oxidative stress in chondrocytes chondrotoxicity [42]

mitochondrial dysfunction 
and  oxidative stress 

in  Müller  cells

retinopathy [43]

decreased GLUT1 expression dysglycemia [44]

Nitroimidazoles gyrase/topoisomerase ROS-independent neuronal death neurotoxicity [32]

mitochondrial targets [3]. Principal mechanisms un-
derlying this toxicity include inhibition of respiratory 
chain complexes, uncoupling of oxidative phosphory-
lation, disruption of mitochondrial protein transport, 
and suppression of key reactions within the tricar-
boxylic acid cycle [24]. Comprehensive discussions of 
these nonspecific mitochondrial effects can be found 
in several recent review articles [2, 25-27].

In particular, proteins of the mitochondrial 50S 
ribosomal subunit display high degree of homology to 
their bacterial counterparts, which explains why an-
tibiotics targeting the prokaryotic 50S subunit could 
also impair mitochondrial translation [45]. Indeed, all 
classes of antibiotics listed in Table  1 that act on the 
50S subunit (except clindamycin) have been shown 
to inhibit not only bacterial, but also mitochondrial 
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protein synthesis [46-51]. For example, XL2, a mem-
ber of the oxazolidinone class, suppresses mitochon-
drial translation by binding to the same A-site on the 
ribosome as it does in bacterial cells [52].

In addition to targeting the 50S subunit, some an-
tibiotics also act on the mitochondrial 30S ribosomal 
subunit, thereby inhibiting mitochondrial translation. 
Adverse effects of certain antibiotics appear to de-
pend on structural features of the mitochondrial 30S 
subunit. For example, mutations in the mitochondrial 
12S rRNA gene (1555A>G and 1494C>T) are associated 
with the significantly increased risk of aminoglyco-
side-induced ototoxicity [53, 54]. These mutations are 
thought to render the secondary structure of mito-
chondrial 12S rRNA, a component of the 30S subunit, 
more similar to the corresponding region of the bac-
terial 16S rRNA, which constitutes a therapeutic tar-
get of aminoglycosides [37, 55, 56].

Doxycycline, a member of the tetracycline class, 
induces a “mitonuclear imbalance” characterized by 
disruption of the stoichiometric ratio between mito-
chondrial and nuclear genomes that encode electron 
transport chain (ETC) proteins [57]. This imbalance 
subsequently leads to mitochondrial fragmentation 
and impaired respiratory function [57].

In addition to the impairing mitochondrial rep-
lication, fluoroquinolone antibiotics also disrupt mi-
tochondrial protein synthesis and decrease relative 
amount of mitochondrial DNA (mtDNA) [58,  59]. Pro-
teomic analyses in the eukaryotic cell line HEK-293 
have identified several additional intracellular tar-
gets of fluoroquinolones. Among these is NUDT1, an 
enzyme involved in protecting cells from oxidative 
stress by hydrolyzing oxidized nucleotides. Treatment 
with ciprofloxacin or levofloxacin reduces NUDT1 
levels, thereby lowering cellular resistance to the 
fluoroquinolone-induced oxidative stress [60]. Sev-
eral mitochondrial proteins were also identified as 
targets, including AIFM1 – a regulator of cell death 
and a mediator of metabolite transport across the in-
ner mitochondrial membrane. Ciprofloxacin has been 
shown to bind AIFM1, resulting in dysfunction of re-
spiratory chain complexes  I and IV. Moreover, both 
ciprofloxacin and levofloxacin inhibit IDH2 (isocitrate 
dehydrogenase 2), further contributing to ETC impair-
ment [60].

Antibiotics that do not target bacterial replication 
or translation, such as vancomycin and ceftriaxone 
(inhibitors of bacterial cell wall synthesis) also ex-
hibit nonspecific interactions within host tissues. For 
example, vancomycin can bind to elastin, a structur-
al protein of the vessel wall, promoting formation of 
vancomycin aggregates that exert toxic effects on the 
endothelial cells [61]. Ceftriaxone, a cephalosporin 
antibiotic, has been shown to interact with Aurora  B 
kinase, a key regulator of cell cycle and tumor pro-

gression. This unexpected interaction highlights the 
potential for exploring anticancer properties of cef-
triaxones [62].

ANTIBIOTICS AND CELLULAR SENESCENCE

Antibiotics used in cancer therapy. As noted 
above, several antibiotics are employed as antitumor 
agents and, by definition, have the capacity to halt 
the cell cycle and induce cellular senescence. These 
compounds damage cellular DNA, activate the DNA 
damage response, and generate oxidative stress, all 
of which contribute to the onset and progression of 
cellular senescence.

Anthracyclines form cleavable DNA complexes, 
inhibit topoisomerase II activity, and induce oxidative 
stress, collectively disrupting both transcription and 
DNA replication [63]. They also trigger mitochondrial 
dysfunction by inhibiting components of the respira-
tory chain, promoting mitochondrial iron accumula-
tion, and increasing production of reactive oxygen 
species (ROS) [64]. Capacity of doxorubicin and other 
anthracyclines to induce cellular senescence is well 
documented; both their mitochondrial and genotoxic 
effects, accompanied by oxidative stress, contribute 
to this outcome [65, 66]. Notably, the doxorubicin-in-
duced senescence could proceed through mechanisms 
that are either p53-dependent or p53-independent 
[67]. Importantly, anthracyclines have been shown to 
induce cellular senescence not only in  vitro but also 
in animal models [68, 69].

Bleomycin induces the genomic DNA strand 
breaks [70] and promotes mitochondrial dysfunction, 
both of which contribute to the development of cellu-
lar senescence [71]. It triggers a senescent phenotype 
characterized by the increased numbers of SA-β-gal 
positive cells, morphological alterations, elevated ly-
sosomal content, and reduced proliferative capacity 
in the A549 lung adenocarcinoma cells, as well as in 
the primary alveolar epithelial cells isolated from the 
rats with bleomycin-induced pulmonary fibrosis [72]. 
In the lung tissue of these animals, elevated levels 
of γH2AX-positive cells, activation of p21, and emer-
gence of SASP were also observed [73]. Furthermore, 
two bleomycin derivatives, boanmycin and boningmy-
cin, have likewise been reported to induce cellular 
senescence [74, 75].

Dactinomycin (actinomycin  D), an inhibitor of 
RNA synthesis in both prokaryotic and eukaryotic 
cells, has been shown to induce cellular senescence 
[76, 77]. In the human mesenchymal stem cells, dacti-
nomycin treatment leads to the increased SA-β-gal ac-
tivity and SASP development [77]. Senescence induc-
tion has also been observed in the OCI-AML3 acute 
myeloid leukemia cells carrying the mutant form of 
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NPM1 gene (NPM1c), where it is accompanied by mi-
tochondrial stress, including mitochondrial fragmen-
tation and elevated ROS production [76]. Moreover, 
the conditioned medium from the dactinomycin-treat-
ed cells was found to reduce mitochondrial inner 
membrane potential (ΔΨm) and increase ROS levels 
in the recipient cells [78].

Mitomycin C induces formation of inter- and 
intrastrand DNA crosslinks between guanine resi-
dues, thereby inhibiting both DNA replication and 
transcription [79]. It also damages mtDNA [80], thus 
contributing to mitochondrial dysfunction [81]. In 
the human dermal fibroblasts, mitomycin  C triggers 
cellular senescence, characterized by the increased 
SA-β-gal activity, cell-cycle arrest, development of the 
senescence-associated secretory phenotype (SASP), 
and elevated ROS levels [82]. In  vivo, mitomycin  C has 
likewise been shown to induce cellular senescence, 
as demonstrated in the rabbit trabeculectomy mod-
el  [83].

The promising antitumor ionophore antibiotic sa-
linomycin, which also possesses antibacterial proper-
ties, not only induces DNA damage but also promotes 
lysosomal iron accumulation and oxidative stress. 
These effects lead to the cell-cycle arrest and devel-
opment of cellular senescence in the MDA-MB-231 
breast cancer cells [84, 85]. Interestingly, despite its 
pro-senescence activity, salinomycin is also capable 
of inducing apoptosis in various human tumor cell 
types, including MDA-MB-231 cells [84, 86, 87].

The relatively rare antitumor antibiotic lidamy-
cin also appears to induce cellular senescence. Treat-
ment of the BEL-7402 and MCF-7 cells, with lidamycin 
leads to the increased cell size and higher propor-
tion of the SA-β-gal-positive cells [88]. Studies with 
the BEL-7402 cells further demonstrate that lidamy-
cin could trigger senescence and mitotic catastrophe 
either in parallel or sequentially [89]. Reduction in 
the telomerase activity and decreased expression of 
EZH2 are thought to play key roles in the lidamy-
cin-induced senescence [89, 90].

Antibacterial antibiotics. Influence of antibiot-
ics not traditionally used in cancer therapy on the 
development of cellular senescence remains poorly 
understood. Chloramphenicol, an inhibitor of both 
bacterial and mitochondrial protein synthesis, has 
been shown to suppress the mitomycin  C-induced 
apoptosis while increasing the p21 expression and 
the number of SA-β-gal-positive cells [50]. Similar se-
nescence-promoting effects have been observed with 
other protein synthesis inhibitors, including doxycy-
cline, clindamycin, and minocycline [50]. Cephalexin, 
a cephalosporin antibiotic, does not induce senes-
cence on its own; however, it enhances senescence 
in the cells exposed to ionizing radiation, indicating 
potential radiosensitizing properties [91].

It can be hypothesized that antibiotics inducing 
mitochondrial dysfunction could, under certain con-
ditions, promote the development of cellular senes-
cence (Fig.  2). Mitochondrial dysfunction is known to 
trigger inflammatory responses through the release of 
mitochondrial damage-associated molecular patterns 
(DAMPs), including mitochondrial DNA, mitochondri-
al RNA, and N-formylmethionine-containing proteins 
[92,  93]. Inflammation, in turn, is a well-established 
driver of cellular senescence (Fig.  1). Moreover, mito-
chondrial dysfunction is almost invariably accompa-
nied by oxidative stress resulting from the impaired 
redox processes [94, 95], which further contributes to 
the senescence induction [96] (Figs.  1 and 2).

Antibiotics capable of inducing cellular senescence 
include oxazolidinones, which impair mitochondrial 
function, cause cell cycle arrest, and increase pro-
portion of the SA-β-gal-positive cells [97, 98]. Similar 
to salinomycin, oxazolidinones could simultaneously 
trigger both senescence and apoptosis, as demonstrat-
ed in the DU145 prostate cancer cells [98]. A recent 
review [99] summarizes evidence supporting poten-
tial use of oxazolidinones and their derivatives as 
antitumor agents. In addition, the bacteriostatic vet-
erinary antibiotics amoxicillin and chlortetracycline 
have been shown to inhibit cell proliferation [100].

Incubation of glioblastoma cells with the fluoro-
quinolone ciprofloxacin induced CS. When exposure 
was limited to 10 days, this senescent state was revers-
ible: after ciprofloxacin was removed from the medi-
um, the cells resumed proliferation after a 2-3-day lag 
[101]. In contrast, treatment for 15 days or longer re-
sulted in irreversible senescence. Reversibility of the 
ciprofloxacin-induced senescence was shown to de-
pend on RelA (p65), a subunit of the NF-κB complex 
[101]. However, it remains unclear how ciprofloxacin 
and other fluoroquinolones influence senescence in 
non-tumor cell lines or in animal models.

Antibiotics as senolytics. Accumulation of se-
nescent cells is known to impair functions of organs 
and tissues, in part due to the chronic inflammation 
driven by SASP. The use of senolytics, agents that se-
lectively eliminate senescent cells, has been shown 
to restore lost or compromised functions [102]. Se-
nolytics can be broadly divided into two major cate-
gories: the first targets pro-survival pathways in the 
senescent cells, thereby promoting their apoptosis; 
the second amplifies existing cellular stresses with-
in senescent cells, triggering in addition to apoptosis 
alternative forms of cell death such as necrosis or 
ferroptosis [102].

In addition to the well-established senolytics 
such as combination of quercetin with dasatinib [103, 
104], senolytic properties have also been found in 
several antibiotics. Although the mechanisms under-
lying the senolytic activity of most antibiotics remain 
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Fig. 2. Possible pathways of cell senescence induction by antibiotics. Abbreviations: ↓ΔΨm, decrease in mitochondrial trans-
membrane potential; ↓ATP, decrease in ATP level; ↑Ca2+, increase in calcium ion concentration; ROS, reactive oxygen species. 
Details are given in the text.

largely unexplored, available evidence indicates that 
these compounds fall into the second major catego-
ry of senolytics: they enhance pre-existing stresses 
in the senescent cells, primarily through mitochon-
drial disruption and/or interference with autophagy 
pathways.

The ionophore antibiotic nigericin has been 
shown to exert a multifaceted senolytic effect by 
depolarizing both the plasma membrane and the 
inner mitochondrial membrane, promoting cytoplas-
mic acidification, and inhibiting autophagy. Together, 
these disruptions destabilize cellular homeostasis and 
ultimately lead to the death of senescent cells [105]. 
Notably, targeting any one of these processes individ-
ually was insufficient to produce a senolytic effect.

In the study using the A549 cell-based aging 
model induced by alisertib and CFI-400945, addi-
tion of the ionophore salinomycin triggered mito-
chondrial dysfunction and oxidative stress, leading 
to elimination of the SA-β-gal positive cells through 
PANoptosis – a  coordinated activation of pyroptosis, 
apoptosis, and necroptosis [106]. Effects of salinomy-
cin resembled those observed upon knockdown of 
the SLC25A23 gene encoding a mitochondrial carrier 
protein that facilitates Ca2+ uptake [106].

Senolytic activity has also been identified among 
the macrolide antibiotics. Azithromycin and roxithro-

mycin were shown to exert senolytic effects in the 
MRC5 and BJ fibroblasts in the bromodeoxyuridine-in-
duced senescence model, with azithromycin demon-
strating greater selectivity toward the senescent cells 
[107]. This senolytic action appears to be mediated, at 
least in part, by the induction of autophagy, although 
azithromycin exhibited a concentration-dependent, 
bidirectional influence on mitochondrial respiration. 
Azithromycin also displayed senolytic properties in 
the “aged” endometrial stromal cells isolated from 
the patients with ovarian endometriosis [108]. Inter-
estingly, erythromycin showed no senolytic effect in 
one study [107], yet demonstrated senolytic activity 
in another, that used a hydrogen peroxide-induced se-
nescence model in the BEAS-2B epithelial cells [109]. 
Roxithromycin also exhibited senolytic effects in the 
WI-38 lung fibroblasts in the bleomycin-induced se-
nescence model [110].

Several antibiotics that inhibit bacterial protein 
synthesis have also demonstrated senolytic activity. 
The veterinary antibiotic valnemulin, for example, 
reduced proportion of the senescent cells in the in-
testinal tissue of mice with experimentally induced 
ulcerative colitis [111]. Doxycycline, a member of 
the tetracycline class, exhibited senolytic effects 
in the mouse embryonic fibroblasts derived from 
the Hutchinson–Gilford progeria mice model [112]. 
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Chloramphenicol was shown to prevent the 5-fluo-
rouracil-induced senescence by activating autophagy 
[113]. Interestingly, however, another study reported 
that both chloramphenicol and doxycycline increased 
the number of SA-β-gal positive cells and elevated the 
p21 protein levels, suggesting context-dependent ef-
fects on cellular senescence [50].

CONCLUSION

The ability of antitumor antibiotics to induce 
stable cell-cycle arrest and cellular senescence both 
in  vitro and in  vivo has long been recognized and is 
supported by numerous experimental studies. A clas-
sic example is the anthracycline doxorubicin, which 
induces persistent DNA damage, activates the p53/p21 
signaling pathway, and triggers hallmark senescence 
phenotypes such as SA-β-gal activity and SASP. The 
doxorubicin-induced senescent cells have also been 
shown to contribute to the late adverse effects of 
chemotherapy [114].

Interestingly, the same or structurally similar 
agents can exhibit opposing activities – promoting 
senescence under some conditions while acting as 
senolytics under others. A notable example is the 
antibiotic salinomycin: several studies have shown 
that it induces hallmark features of CS in tumor 
cells (e.g., increased SA-β-gal activity and elevated 
p21), whereas more recent findings demonstrate that 
it can also function as a senolytic, triggering PANop-
tosis in the pre-existing senescent cells [84, 106]. This 
context- dependent duality underscores complexity of 
the antibiotic-mediated stress responses and suggests 
potential for the two-stage cancer therapeutic strat-
egies in which the chemotherapy-induced tumor se-
nescent cells are subsequently cleared using senolyt-
ics [106].

Mechanistically, many antibiotics, particularly 
bactericidal ones such as fluoroquinolones, amino-
glycosides, and certain β-lactams, exert mitotoxic ef-
fects on eukaryotic cells, leading to mtDNA damage, 
impaired mitochondrial energy metabolism, and in-
creased ROS production [115]. These disturbances are 
closely linked to activation of the cellular senescence 
programs, suggesting that the antibiotic-induced mi-
totoxicity may underlie their pro-senescence side ef-
fects. However, prevalence and biological significance 
of these effects in  vivo remain poorly understood. 
To  date, there is virtually no direct evidence demon-
strating causal relationship between the antibiotic 
exposure and accumulation of the senescent cells in 
human tissues.

These knowledge gaps carry important clinical 
implications. Long-term side effects of antibiotic use 
(persistent changes in the microbiota, metabolic and 

immune shifts, musculoskeletal risks, etc.) have been 
well documented in both epidemiological and exper-
imental studies. It is plausible that some of these 
lasting consequences may, in part, stem from the 
antibiotic-induced cellular senescence in critical cell 
populations, including fibroblasts, endothelial cells, 
and other mesenchymal-derived cells. This hypothesis 
warrants further focused investigation.

Taken together, the evidence suggests that al-
most all antibiotics exhibiting pronounced mitotox-
icity or capacity to induce DNA stress in eukaryotic 
cells may, under certain conditions, such as specific 
dosages, exposure durations, cellular targets, and mi-
croenvironmental contexts, influence cellular aging 
processes. This highlights several important direc-
tions for systematic investigation: (i)  comprehensive 
screening of antibiotic molecules for pro-senescence 
and senolytic activities across the diverse primary 
and tissue-specific cellular models; (ii)  determina-
tion of threshold concentrations and temporal win-
dows at which the pro-senescence effects transition 
into overt cytotoxicity; (iii)  in  vivo studies aimed at 
detecting and mapping senescent cell accumulation 
following clinically relevant antibiotic regimens; and 
(iv)  assessment of the contribution of antibiotic-in-
duced cellular senescence to the long-term clinical 
outcomes, as well as exploration of whether these 
effects could be mitigated using senomorphics or 
senolytics.

Convergence of the experimental evidence on mi-
totoxic and pro-senescence effects of multiple antibi-
otics with clinical observations of long-term adverse 
outcomes provides a strong rationale for the targeted 
investigations into the role of cellular senescence in 
antibiotic toxicity. Systematic examination of this is-
sue would not only deepen our understanding of the 
fundamental mechanisms underlying antibiotic-asso-
ciated side effects but could also open new strategies 
for their prevention and treatment. Such efforts may 
ultimately support the design of combination ap-
proaches “antibiotic + senolytics/senomorphics”, when 
it is safe and supported by evidence.
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