
COMPARATIVE ANALYSIS OF RNA-CHROMATIN INTERACTOME DATA 1709
BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
REFERENCES
1. Mattick, J.S., Amaral, P. P., Carninci,P., Carpenter,S.,
Chang, H. Y., Chen, L.-L., Chen, R., Dean, C., Dinger,
M. E., Fitzgerald, K. A., Gingeras, T. R., Guttman, M.,
Hirose, T., Huarte, M., Johnson, R., Kanduri, C.,
Kapranov,P., Lawrence, J.B., Lee, J. T., Mendell, J. T.,
Mercer, T. R., Moore, K. J., Nakagawa, S., Rinn, J. L.,
Spector, D. L., et al. (2023) Long non-coding RNAs:
definitions, functions, challenges and recommenda-
tions, Nat. Rev. Mol. Cell Biol., 24, 430-447, https://
doi.org/10.1038/s41580-022-00566-8.
2. Engreitz, J. M., Pandya-Jones, A., McDonel, P.,
Shishkin,A., Sirokman,K., Surka,C., Kadri,S., Xing,j.,
Goren, A., Lander, E. S., Plath, K., and Guttman, M.
(2013) The Xist lncRNA exploits three-dimensional
genome architecture to spread across the Xchromo-
some, Science, 341, 1237973, https://doi.org/10.1126/
science.1237973.
3. Simon, M.D., Wang, C.I., Kharchenko, P.V., West, J.A.,
Chapman, B. A., Alekseyenko, A. A., Borowsky, M. L.,
Kuroda, M.I., and Kingston, R.E. (2011) Thegenomic
binding sites of a noncoding RNA, Proc. Natl. Acad.
Sci. USA, 108, 20497-20502, https://doi.org/10.1073/
pnas.1113536108.
4. Chu,C., Qu,K., Zhong, F.L., Artandi, S.E., and Chang,
H. Y. (2011) Genomic maps of long noncoding RNA
occupancy reveal principles of RNA-chromatin inter-
actions, Mol. Cell, 44, 667-678, https://doi.org/10.1016/j.
molcel.2011.08.027.
5. Quinn, J. J., Ilik, I. A., Qu, K., Georgiev, P., Chu, C.,
Akhtar, A., and Chang, H. Y. (2014) Revealing long
noncoding RNA architecture and functions using do-
main-specific chromatin isolation by RNA purification,
Nat. Biotechnol., 32, 933-940, https://doi.org/10.1038/
nbt.2943.
6. Mondal,T., Subhash, S., Vaid, R., Enroth, S., Uday, S.,
Reinius, B., Mitra, S., Mohammed, A., James, A. R.,
Hoberg, E., Moustakas, A., Gyllensten, U., Jones,
S. J., Gustafsson, C. M., Sims, A. H., Westerlund, F.,
Gorab,E., and Kanduri,C. (2015) MEG3 long noncod-
ing RNA regulates the TGF-β pathway genes through
formation of RNA-DNA triplex structures, Nat. Com-
mun., 6, 7743, https://doi.org/10.1038/ncomms8743.
7. Chu, H. P., Cifuentes-Rojas, C., Kesner, B., Aeby, E.,
Lee, H.-G., Wei, C., Oh, H. J., Boukhali, M., Haas, W.,
and Lee, J. T. (2017) TERRA RNA antagonizes ATRX
and protects telomeres, Cell, 170, 86-101, https://
doi.org/10.1016/j.cell.2017.06.017.
8. Sridhar,B., Rivas-Astroza,M., Nguyen, T.C., Chen,W.,
Yan, Z., Cao, X., Hebert, L., and Zhong, S. (2017) Sys-
tematic mapping of RNA-chromatin interactions
invivo, Curr. Biol., 27, 602-609, https://doi.org/10.1016/
j.cub.2017.01.011.
9. Li, X., Zhou, B., Chen, L., Gou, L. T., Li, H., and Fu,
X.D. (2017) GRID-seq reveals the global RNA-chroma-
tin interactome, Nat. Biotechnol., 35, 940-950, https://
doi.org/10.1038/nbt.3968.
10. Bell, J. C., Jukam, D., Teran, N. A., Risca, V. I., Smith,
O.K., Johnson, W.L., Skotheim, J.M., Greenleaf, W.J.,
and Straight, A. F. (2018) Chromatin-associated RNA
sequencing (ChAR-seq) maps genome-wide RNA-to-
DNA contacts, Elife, 7, e27024, https://doi.org/10.7554/
eLife.27024.
11. Limouse, C., Smith, O. K., Jukam, D., Fryer, K. A.,
Greenleaf, W. J., and Straight, A. F. (2023) Global
mapping of RNA-chromatin contacts reveals a prox-
imity-dominated connectivity model for ncRNA-
gene interactions, Nat. Commun., 14, 6073, https://
doi.org/10.1038/s41467-023-41848-9.
12. Yan,Z., Huang,N., Wu,W., Chen,W., Jiang,Y., Chen,J.,
Huang,X., Wen,X., Xu, j., Jin, Q., Zhang,K., Chen,Z.,
Chien, S., and Zhong, S. (2019) Genome-wide colo-
calization of RNA–DNA interactions and fusion RNA
pairs, Proc. Natl. Acad. Sci. USA, 116, 3328-3337,
https://doi.org/10.1073/pnas.1819788116.
13. Bonetti, A., Agostini,F., Suzuki, A. M., Hashimoto, K.,
Pascarella, G., Gimenez, J., Roos, L., Nash, A. J.,
Ghilotti,M., Cameron, C.J.F., Valentine,M., Medvedeva,
Y. A., Noguchi, S., Agirre, E., Kashi, K., Samudyata,
Luginbühl,J., Cazzoli,R., Agrawal,S., Luscombe, N.M.,
Blanchette, M., Kasukawa, T., Hoon, M., Arner, E.,
Lenhard, B., et al. (2020) RADICL-seq identifies gen-
eral and cell type-specific principles of genome-wide
RNA-chromatin interactions, Nat. Commun., 11, 1018,
https://doi.org/10.1038/s41467-020-14337-6.
14. Gavrilov, A. A., Zharikova, A. A., Galitsyna, A. A.,
Luzhin, A.V., Rubanova, N.M., Golov, A. K., Petrova,
N.V., Logacheva, M.D., Kantidze, O.L., Ulianov, S.V.,
Magnitov, M.D., Mironov, A.A., and Razin, S.V. (2020)
Studying RNA-DNA interactome by Red-C identifies
noncoding RNAs associated with various chromatin
types and reveals transcription dynamics, Nucleic
Acids Res., 48, 6699-6714, https://doi.org/10.1093/nar/
gkaa457.
15. Ryabykh, G.K., Mylarshchikov, D.E., Kuznetsov, S.V.,
Sigorskikh, A. I., Ponomareva, T. Y., Zharikova, A. A.,
and Mironov, A. A. (2022) RNA-chromatin interac-
tome: What? Where? When? Mol. Biol., 56, 210-228,
https://doi.org/10.31857/S002689842202015X.
16. West, J. A., Davis, C. P., Sunwoo, H., Simon, M. D.,
Sadreyev, R. I., Wang, P. I., Tolstorukov, M. Y., and
Kingston, R. E. (2014) The long noncoding RNAs
NEAT1 and MALAT1 bind active chromatin sites,
Mol. Cell, 55, 791-802, https://doi.org/10.1016/j.molcel.
2014.07.012.
17. Lieberman-Aiden,E., van Berkum, N.L., Williams,L.,
Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie,
B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R.,
Bernstein,B., Bender, M.A., Groudine,M., Gnirke,A.,
Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S.,
and Dekker, J. (2009) Comprehensive mapping of