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Abstract—Two types of experiments are used to study RNA-chromatin interactions: the interactome search
for individual RNAs (“one-to-all” or OTA) and genome-wide contact mapping for all RNAs (“all-to-all” or ATA).
Comparative analysis of ATA and OTA data revealed fundamental differences in resolution, completeness,
and specificity. OTA data exhibit high resolution (~1000 bp) and reproducibility (>90%), serving as a “gold
standard”. ATA data, however, have lower resolution (~5000 bp), and their reproducibility (<10%) is criti-
cally dependent on the protocol, with two-step fixation using disuccinimidyl glutarate and formaldehyde
(GRID-seq) showing a clear advantage over formaldehyde alone. The introduced “chromatin potential” metric
and BaRDIC peak filtering effectively isolate the specific signal. This study proposes a strategy for reliable in-
teractome analysis: combining RNA selection based on chromatin potential with the use of concordant contacts

from peaks.
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INTRODUCTION

Non-coding RNAs (ncRNAs) in animals and plants
are involved in a wide range of biological process-
es, including cell differentiation, gene expression
regulation, chromatin remodeling, chromatin struc-
ture maintenance, splicing, RNA processing, and bio-
molecular condensate formation. Disruptions in the
ncRNA-mediated regulatory pathways are associated
with the development of various diseases, emphasiz-
ing importance of understanding their mechanisms of
action [1]. A significant portion of ncRNA functions is
realized in the cell nucleus, necessitating a detailed
study of the RNA-chromatin interactome.

RNA molecules interact with numerous proteins,
chromatin, and other RNAs. Experimental methods

* To whom correspondence should be addressed.

to identify DNA loci in contact with ncRNAs can be
divided into two groups: “one-to-all” (OTA) and “all-
to-all” (ATA). The first group (RAP [2], CHART-seq [3],
ChIRP-seq [4], dChIRP-seq [5], ChOP-seq [6], CHIRT-seq
[7]) identifies contacts of a known RNA with chro-
matin, while the second group (MARGI [8], GRID-seq
[9], ChAR-seq [10, 11], iMARGI [12], RADICL-seq [13],
Red-C [14]) aims to determine all possible RNA-DNA
contacts in the cell [15].

Both groups of methods are actively used in re-
search, but typically not in combination thus prevent-
ing development of the unified standards to enhance
reliability and significance of the RNA-chromatin in-
teractome data analysis. To date, there has been no
systematic comparison of ATA and OTA data in terms
of key characteristics such as accuracy, completeness,
and specificity.

Despite the rapid development of these tech-
nologies, the resulting data are characterized by
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Fig. 1. Accuracy of determining position of the real contact differs in ATA and OTA protocols. a) Source of position bias in
ATA data — chromatin structure. b) In OTA, the observed contact position offset from the real position is determined only
by the size of DNA fragments. c) Possible source of non-specific interactions.

significant methodological issues and systematic bi-
ases. First, the density of RNA contacts depends on
the distance between the RNA source gene and the
target DNA loci on the same chromosome [9, 11-14,
16]. This bias, termed “RNA-DNA scaling” (RD-scaling),
is analogous to scaling in the DNA-DNA interactome
data (Hi-C method) [17]. Second, chromatin accessi-
bility significantly influences the data, referred to
as “background.” Background is assessed using “in-
put” data in OTA experiments or contacts of the pro-
tein-coding RNAs (mRNAs) in the ATA experiments [9].
Additionally, these experiments inherently have limit-
ed precision in determining contacts. In the ATA ex-
periments, RNA crosslinking with chromatin can occur
at a distance from the real contact (Fig. 1a), whereas
in the OTA experiments, precision of the contact po-
sition determination depends only on the size of DNA
fragments (Fig. 1b). Presence of non-specific interac-
tions poses a particular problem. A significant portion
of the observed contacts could be explained by elec-
trostatic attraction between the negatively charged
RNA and positively charged histone tails, as well as
by preferential crosslinking of amino groups present
on the lysines and arginines of histones by formalde-
hyde [18]. Although affinity of such non-specific inter-
actions is relatively low, their cumulative contribution
is substantial due to the large number of potential
binding sites (Fig. 1c). On the other hand, technical
limitations of the existing experimental methods re-
sult in the loss of some true contacts. These factors
collectively raise questions about the specificity of the
detected interactions and accuracy, completeness, and
specificity of the RNA-chromatin interactome data.

The aim of this study is a systematic comparative
analysis of data obtained by OTA and ATA methods
to assess their accuracy, completeness, and specificity.
The following objectives were addressed:
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* development of metrics for assessing interaction
specificity (chromatin potential, chP) and data re-
producibility (concordance);

* comparative analysis of replicate consistency
within each method,;

* cross-validation of data obtained by different
methods;

* development of recommendations for improv-
ing the reliability of RNA-chromatin interactome
analysis.

MATERIALS AND METHODS

Data. Human and mouse RNA-chromatin interac-
tome data were obtained from the RNA-Chrom data-
base [19]. Only ATA data with corresponding RNA-seq
data from the same cell line were used. When more
than two replicates were available in the ATA data,
the two most complete replicates were selected. RNA-
seq data were obtained from the GEO database and
processed similarly to the ATA data processing pro-
cedure described in the RNA-Chrom. List of the used
data is provided in Tables S1 and S2 in the Online
Resource 1. Only RNAs demonstrating more than 1000
contacts with chromatin in each replicate were includ-
ed in analysis to ensure sufficient statistical power for
identifying “peaks” (genomic regions enriched with
RNA-chromatin contacts) using the BaRDIC program
[20]. Ribosomal RNAs were excluded from the analy-
sis. For example, applying this filter in the “RADICL,
ES (NPM)” and “RADICL, ES (ActD)” experiments left
fewer than 1000 RNAs and less than 50% of contacts
from the initial size of the selected replicates (Fig. S1,
a and b in the Online Resource 1). Considering sig-
nificant overrepresentation of the proximal contacts
(RD-scaling), interactions located within 1 Mb of the
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genes encoding the corresponding RNAs were exclud-
ed from further analysis in this study.

Use of BaRDIC and threshold selection. Like
most genome-wide data, RNA-chromatin interactome
data are characterized by high level of non-specific
signals (“noise”). Specialized peak-calling algorithms
are used to identify significant interactions by de-
tecting statistically significant clusters of interactions
in the specific genomic loci.

In this study, we used the BaRDIC algorithm
[20], which accounts for RD-scaling and chromatin
openness. This algorithm uses a probabilistic esti-
mate of the likelihood that the contacts in a chroma-
tin locus belong to a peak or noise. The Benjamini-
Hochberg multiple testing correction (FDR, false dis-
covery rate) is next applied to control proportion of
false positives based on the background distribution.
However, in our case, significant overlap of signal
and noise distributions leads to the loss of a sub-
stantial proportion of true interactions when using
a strict FDR threshold. To avoid this problem, we
used a flexible selection criterion: for each RNA, we
selected top 10% of the peaks with the lowest FDR.
Since peak sizes could reach tens of kilobases due
to the data sparsity, all comparisons were conducted
at the level of individual contacts intersecting these
peaks.

For the ATA data analysis, BaRDIC was run with
default parameters. For the OTA experiments, which
have better contact coverage, the following parame-
ters were set: --trans_min 400 bp; --cis_start 100 bp;
--trans_step 50 bp. Background was calculated using
input data converted to BedGraph, with a window
size of 1000 bp.

Chromatin potential. In nearly all studies in-
volving ATA experiments, it has been noted that the
number of RNA contacts with chromatin linearly de-
pends on the expression level of the corresponding
RNA [9-11, 13, 14]. Normalization by expression level
allows us to identify RNAs that demonstrate an in-
creased tendency to interact with chromatin, i.e. the
molecules with contact frequency significantly ex-
ceeding what would be expected at a given expres-
sion level.

To assess tendency of RNAs to contact chroma-
tin, we introduce the concept of “chromatin poten-
tial.” Let us consider RNAs that have more than 1000
contacts in each replicate. Let N, be the total number
of contacts of selected RNAs in the ATA experiment
accounting for the RD-scaling filter; N, be the total
number of uniquely mapped and gene-annotated
reads in the RNA-seq experiment; n, be the number
of contacts accounting for the RD-scaling filter of a
specific i-th RNA in the ATA experiment; and n,' be
the number of reads of a specific i-th RNA in the
RNA-seq experiment. To compare these observations,
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we apply a Z-test for proportions. For each i-th RNA,
we calculate the Z-statistic (Z;) (1):

_ Pe— P ,
\/pi(l_pi)(l/Nc+1/Ne)
‘ , . , 1
z‘_?ic, i_ife, ‘_nf:‘*‘”fe
pc - NC) pe - Nev p’L - NC—‘FNE.

The Z-statistic follows a standard normal dis-
tribution, allowing us to estimate p-value and the
Benjamini-Hochberg FDR. We refer to the Z-statistic
value as the chromatin potential. Chromatin poten-
tial surpasses the simple ratio of the number of con-
tacts to the expression level because it accounts for
the statistical significance of the deviation. The ratio
of the number of contacts to the expression level is
heavily biased toward RNAs with low coverage in the
RNA-seq data, where the denominator (expression
level) is estimated with significant error, leading to a
wide scatter of values (up to six orders of magnitude;
see Fig. S2 in the Online Resource 1).

However, the following circumstances must be
considered. First, strand-specific total RNA sequenc-
ing with rRNA depletion is required for such analy-
sis. Second, this analysis is applicable only to long
RNAs, as standard RNA-seq data do not allow for an
adequate assessment of the expression level of RNAs
shorter than 100 nucleotides [21].

RESULTS

Chromatin potential. In all genome-wide stud-
ies of RNA-chromatin interactions (ATA experiments),
there is a significant predominance of mRNA contacts.
This is because mRNAs generally have higher expres-
sion levels compared to ncRNAs. Chromatin potential
(chP) addresses the question of whether the propor-
tion of contacts for a given RNA is statistically signifi-
cantly different from what would be expected if all
RNAs contacted chromatin non-specifically and pro-
portionally to their expression levels. If most mRNA
contacts with chromatin are non-specific, it can be
expected that ncRNAs will demonstrate higher affinity
for chromatin. As expected, most ncRNAs exhibited a
chromatin potential greater than zero (Fig. 2a; Fig. S3
in the Online Resource 1), but a large number of
mRNAs also had a positive chromatin potential. As the
chP threshold increased, the proportion of mRNAs
among the RNAs passing the threshold decreased
(Fig. 2b; Table S3 in the Online Resource 1) with a
sharp drop in almost all experiments at chP > 20.

The fact that even at high chromatin poten-
tial thresholds, a significant number of protein-cod-
ing RNAs remain may be due to several factors.

BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
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For example, some protein-coding genes contain func-
tional ncRNAs in their intronic regions [22, 23], among
which a significant number of unannotated ncRNAs
can be expected. Positive chromatin potential of some
mRNAs may be associated with these ncRNAs. On the
other hand, non-coding isoforms of mRNAs may them-
selves play a role in chromatin regulation [24].
Comparison of replicates in ATA data. To as-
sess consistency of the RNA-chromatin interactions
between replicates, we evaluated proportion of the
reproducible contacts. Since the exact contact coordi-
nate in the ATA methods could be shifted due to the
protocol specifics, we introduced a genomic distance
parameter (L), within which contacts belonging to the
same RNA but detected in different replicates were
considered concordant. To determine the L threshold
that adequately reflects the method’s resolution, we
calculated, for each RNA, proportion of its contacts
for which at least one contact of the same RNA was
detected in another replicate within the specified dis-
tance L. Analysis of this proportions dependence on
L for the “GRID, ES, Mus musculus” data showed that
the median proportion of concordant contacts ceased
to increase significantly at L > 5000 bp (Fig. S4 in the
Online Resource 1), reaching a plateau. This indicates
that 5000 bp is an empirical estimate of contact po-
sitioning accuracy in the ATA methods. Based on this
result, for subsequent analysis, we divided the genome
into non-overlapping fragments (bins) of a fixed size
(bin bp). The main analysis was conducted with the
bin size of 5000 bp, corresponding to the empirically
estimated positioning accuracy. To test robustness of
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the results and simulate a “high-resolution” scenario,
a bin size of 1000 bp was also used. A bin was con-
sidered concordant for a given RNA if at least one
contact in that bin was detected in both replicates,
and discordant if contacts were present in only one
replicate. This approach allows data aggregation and
quantitative assessment of interaction reproducibility
at the level of genomic loci.

To assess randomness of the matches, we used
a simple model. Assuming that, all RNAs contact ge-
nomic DNA uniformly, the probability of at least one
contact falling into a bin in one experiment can be
estimated as pp;,°(0) = n¢/Ny;,, where i is the RNA
index; e is the experiment (replicate) number; n; is
the number of bins with contacts of the i-th RNA;
Nyin is the total number of bins into which the cor-
responding genome was divided. Here, we neglect
biases in the data, particularly chromatin accessibili-
ty, and assume that the bin size is sufficiently small.
To avoid the influence of RD-scaling, we selected
bins located more than 1 Mb away from the gene
source of the i-th RNA. The probability that contacts
of the i-th RNA from two experiments (a and b) fall
into the same bin is py;,(i) = ppin®@):Ppin’(@). A rough
estimate of the probability of observing k matching
bins can be made using the Bernoulli distribution (2):

i
obs

= C]Iilbinpbm(i)k ! (1 - pbin(i))Nblnik' (2
This allows for a probabilistic assessment of
the correspondence between the replicates or ex-

periments. We define A(i) = (n;n;”/Ny;,). For A = 10,
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a normal approximation can be used to estimate the
probability of such event assuming that replicates
have independent contacts (3):

k—A

=N (WVA) Pz a0 (P2 @

For A < 10, a Poisson approximation is used (4):

P(X > k)~ 1= Fpyisson(k — 1, ). (@)

To assess consistency of the replicates in the ATA
experiments, we analyzed a set of RNAs with more
than 1000 contacts with chromatin in each replicate.
When selecting RNAs, the filter to exclude RD-scaling
regions (within 1 Mb of the RNA source gene) was
not applied; it was applied when selecting contacts.
Importantly, we assessed not just presence of at least
one concordant bin but statistical significance of the
overall level of concordance for each RNA as a whole.
For this, we counted total number of the concordant

RYABYKH et al.

and discordant bins for each RNA and applied a sta-
tistical criterion to test the hypothesis of non-ran-
domness of the observed level of matches (see above
for details). An RNA was considered concordant if its
calculated FDR was less than 0.05. As seen in Fig. S5
in the Online Resource 1, presence of the individual
concordant bins does not guarantee passing this strict
significance threshold.

Table 1 and Fig. S6 in the Online Resource 1 show
the number of RNAs with concordant bins between
the replicates with FDR < 0.05. The analysis was con-
ducted under four conditions to assess the influence
of two factors: genome bin size (1000 bp vs. 5000 bp)
and contact filtering (all contacts vs. contacts from
BaRDIC peaks). For the GRID experiments, neither of
these conditions had an effect: the number of concor-
dant RNAs remained unchanged and almost always
equal to the initial number of selected RNAs (discus-
sion below).

For other ATA data, as expected, when using
all contacts, the number of statistically significantly

Table 1. Number of RNAs with concordant bins in the replicates (FDR < 0.05)

o Number of concordant mRNAs Number of concordant mRNAs
Initial number RNAs), all contact RNA tacts fi K
Experiment of MRNAs (nc s), all contacts (nc s), contacts from peaks
(ncRNAs) Bin 1000 bp Bin 5000 bp Bin 1000 bp Bin 5000 bp
Red-C, K562,
H. sapiens 3230 (636) 1571 (341) 2418 (486) 2779 (556) 3188 (628)
GRID, MM.1S,
H, sapiens 3771 (413) 3771 (413) 3771 (413) 3771 (413) 3771 (413)
GRID, MDA—MB—ZSL 4844 (653) 4844 (653) 4844 (653) 4844 (653) 4844 (653)
H. sapiens
GRID, ES,
M. musculus 4706 (436) 4706 (429) 4706 (427) 4706 (432) 4706 (435)
RADICL (2% FA), ES,
M. musculus 2758 (162) 1829 (87) 2552 (124) 2226 (131) 2704 (158)
RADICL, OPC,
M. musculus 2580 (197) 1954 (136) 2484 (175) 2203 (161) 2555 (191)
RADICL (ActD), ES,
M. musculus 657 (87) 345 (42) 576 (76) 512 (74) 646 (86)
RADICL (NPM), OPC,
M. musculus 3734 (275) 504 (40) 1464 (103) 2128 (136) 2839 (200)
RADICL (1% FA), ES,
M. musculus 2079 (117) 1533 (66) 1986 (80) 1811 (102) 2056 (115)
RADICL (NPM), ES,
M. musculus 643 (149) 643 (149) 643 (149) 643 (148) 643 (148)

Note. Only RNAs with more than 1000 contacts in each replicate were selected. A filter was applied to exclude contacts

within 1 Mb of the RNA source gene.

BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
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concordant RNAs was substantially lower under the
strict condition (bin size = 1000 bp) compared to the
condition corresponding to the method’s resolution
(bin size = 5000 bp). This confirms that a larger bin
better aggregates technical variations and more ac-
curately reflects interaction reproducibility. The most
important observation was that preliminary selection
of the contacts belonging to BaRDIC peaks significant-
ly increased replicate consistency. This filtering either
increased the number of concordant RNAs or allowed
achieving a comparable level of concordance even
when using a strict bin size of 1000 bp compared to
analyzing all contacts with the bin size of 5000 bp.
Thus, identifying RNA-chromatin interaction peaks
using BaRDIC effectively filters out random interac-
tions and highlights the most reliable, reproducible
RNA-chromatin contacts, significantly increasing con-
sistency between the replicates.

After identifying statistically significant concor-
dant RNAs, we assessed completeness of the ATA data
by calculating the median proportion of contacts that
fall into concordant 5000-bp bins, which corresponds
to the estimated resolution of the ATA methods. This
metric reflects proportion of interactions reproduc-
ible between the replicates out of the total number
of detected contacts (Tables S4 and S5 in the Online
Resource 1).

Fundamental differences between the methods
were identified. Completeness of the data for the
Red-C and RADICL-seq did not exceed 2% when an-
alyzing all contacts and 5% for the contacts filtered
by the BaRDIC peaks. In contrast, completeness of
the GRID-seq data was significantly higher, reaching
29% and 82% for all contacts and contacts from the
peaks, respectively.

High reproducibility of the GRID data could likely
be explained by the specifics of the fixation proto-
col. Unlike the methods that use only formaldehyde
(such as Red-C and RADICL-seq), the GRID-seq proto-
col employs a two-step fixation with disuccinimidyl
glutarate (DSG) and formaldehyde. DSG is a crosslink-
ing agent with a long spacer (7.7 A), which effective-
ly crosslinks protein-protein interactions, stabilizing
protein complexes before the chromatin structure is
fixed with formaldehyde [25]. This allows for more
effective “sealing” of protein-mediated RNA-chromatin
interactions, which constitute majority of the specific
contacts.

This hypothesis is quantitatively supported. De-
spite the comparability of the medians of the total
number of contacts of concordant RNAs across all
ATA data (Fig. S7a in the Online Resource 1), the me-
dian number of reproducible (concordant) contacts in
the GRID-seq data was an order of magnitude higher
than the corresponding indicators for the Red-C and
RADICL-seq data (Fig. S7b in the Online Resource 1).
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This indicates that the DSG protocol not only increas-
es the volume of data but fundamentally enhances
proportion of the specific, reproducible signals in
the overall dataset. Thus, the protocol with addition-
al DSG treatment ensures more complete and stable
capture of multiprotein complexes, leading to the sig-
nificant reduction in technical noise and increased
reproducibility between the replicates. Meanwhile,
fixation with formaldehyde alone may inadequately
stabilize large supramolecular complexes, which, in
turn, increases the proportion of random, unstable
interactions and reduces overall concordance.

Despite the fundamental differences in the abso-
lute level of concordance between the methods, we
found a common pattern for all ATA experiments: re-
producibility of contacts positively correlates with the
total number of RNA interactions and its chromatin
potential (Fig. 3; Fig. S8 in the Online Resource 1). The
discovered dependency allows us to draw two import-
ant conclusions about the nature of RNA-chromatin
interactome data:

1. Completeness of the data is a function of se-
quencing depth for a specific RNA. Low reproducibility
of RNAs with a small number of contacts (<10,000) in-
dicates that for such molecules, the data are substan-
tially incomplete and contain a high level of noise.
Sufficient completeness is achieved only with large
number of interactions, indicating the need for deep
sequencing to reliably identify interactome of the in-
dividual RNAs.

2. Reproducibility is a marker of biological sig-
nificance. Positive correlation between the chromatin
potential and the proportion of concordant contacts
suggests that the more specific is the interaction
(higher chromatin potential), the more stable and re-
producible it is between replicates. This strengthens
the position of chromatin potential not only as a mea-
sure of specificity but also as a predictor of reliability
and reproducibility of interactions.

It is also worth noting that the median propor-
tions of concordance of contacts between mRNAs and
ncRNAs were practically indistinguishable (Tables S4
and S5, columns 1 and 4 in the Online Resource 1),
indicating that reproducibility does not depend on the
RNA biotype. To interpret the unexpectedly high lev-
el of concordance of the mRNA contacts, comparable
to that of ncRNAs, two non-exclusive hypotheses have
been proposed:

1. Existence of non-specific but statistically re-
producible interactions, where electrostatic or other
weak forces may lead to massive yet stable binding
of RNA to chromatin.

2. Presence of unknown specific functions in
some mRNAs related to direct interaction with chro-
matin (e.g., mediated by non-coding isoforms or un-
annotated intronic ncRNAS).
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Comparison of replicates in the OTA data. To
assess reproducibility of the experiments with indi-
vidual RNAs, we analyzed consistency of the repli-
cates in the corresponding datasets (Table 2; Fig. S9
in the Online Resource 1). First, the expected high
level of reproducibility was confirmed: in the com-
plete OTA dataset, proportion of the concordant con-
tacts between the replicates exceeded 90% even at a

bin size of 1000 bp. This indicates that the OTA data
have resolution of 1000 bp and high completeness.
Second, a critically important aspect of signal spec-
ificity was identified. When the analysis was limited
to only those contacts that fall into peaks identified
by the BaRDIC program (which filters out rare, single
contacts in favor of statistically significant clusters),
the level of concordance dropped by nearly half.
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Table 2. Proportion of concordant contacts in the OTA replicates (%)
Bin = 1000 bp Bin = 5000 bp
RNA Experiment All contacts, Contacts from | All contacts, Contacts
peaks, % % from peaks, %
CHART, ES do0
JPX (GSM4278791, GSM4278795) 99.5 53.3 100.0 78.2
CHART, ES d3
JPX (GSM4278799, GSM4278803) 99.3 36.8 100.0 70.6
CHART, ES d7
JPX (GSM4278807, GSM4278811) 99.2 44.5 100.0 75.0
ChIRP, ES, genotype: Ythdc1-cKO
MALAT1 (conditional); treatment: DMSO, 79.9 26.9 99.6 50.6
(GSM4669091, GSM4669092)
ChIRP, ES, genotype: Mettl3-WT,
MALAT1 (GSM4875651, GSMA4875652) 924 40.9 99.9 66.3

Note. d0, d3, and d7 correspond to 0, 3, and 7 days of cell differentiation, respectively; p < 0.05.

This sharp decline suggests that the significant pro-
portion (more than half) of all detected contacts, in-
cluding the concordant ones, in the OTA experiments
are likely non-specific.

Comparative analysis of reproducibility be-
tween the ATA and OTA methods. Comparative
analysis of reproducibility between the ATA and OTA
methods allows us to draw the following conclusions:

1. ATA data (except GRID) are characterized by
low reproducibility between the replicates (median
proportion of concordant contacts <5%), indicating
their substantial incompleteness.

2. OTA data, on the other hand, demonstrate high
reproducibility (>90%), confirming their completeness
and allowing them to be considered as a reliable ref-
erence (“gold standard”) for validating interactions
identified in the genome-wide approaches (ATA data).

Comparison of ATA and OTA experiments.
High reproducibility of the OTA data, demonstrated
in the previous section, allows their use as a ref-
erence to assess the degree of consistency between
the genome-wide approach data (ATA) and this ref-
erence. Conducting such comparative analysis comes
with the significant limitations, as it requires avail-
ability of both types of data for the same RNAs in
the identical cell lines and under similar cultivation
conditions, as well as sufficient number of contacts in
the ATA data to ensure statistical power. The publicly
available OTA data matching the conditions of ATA
experiments were found only for two RNAs: MALAT1
and JPX.

For the ncRNAs MALAT1 and JPX, we conduct-
ed comparison using bins with 5000-bp size. As a
measure of consistency, we calculated proportion of
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the contacts from the ATA data that fell into bins en-
riched with the contacts from the BaRDIC peaks of
the corresponding OTA experiment. The analysis was
performed for all ATA contacts as well as for the sub-
set filtered by the BaRDIC peaks. The sets of contacts
from the ATA replicates were combined to increase
data power. The results for the ncRNA MALAT1 are
presented in Table 3 and Fig. S10 in the Online Re-
source 1, and for the ncRNA JPX in Table 4.

For the ncRNA MALAT1, which exhibits an ex-
tremely high level of interactions in the ATA data,
a significant proportion (~50%) of overlaps with the
OTA data was identified, indicating good consistency
between the methods. However, approximately half
of the MALAT1 contacts detected solely by the ATA
method are not confirmed by the independent OTA
method. This allows us to estimate proportion of
non-specific signals in the ATA data for this RNA as
~50%. Importantly, in this case, we do not observe a
significant advantage of the GRID-seq method, which
was so evident in the analysis of the ATA replicate
consistency. This is likely because the total number
of contacts and their reproducibility for MALAT1 are
so high in all ATA experiments that the effect of the
more specific fixation protocol is overshadowed by
the dominant signal.

The situation for the ncRNA JPX, characterized
by low level of contacts in the ATA data, is funda-
mentally different. Overlap with the OTA data was
~60%, allowing us to roughly estimate proportion
of non-specific contacts as ~40%. The low absolute
number of contacts makes this estimate less reli-
able. As expected, based on the known association of
JPX with XIST [26], most of its contacts are localized
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Table 3. Percentage of the consistent MALAT1 RNA contacts with chromatin in the ATA data when compared
with the MALAT1 RNA contacts from the OTA experiments (contacts from BaRDIC peaks) in mouse embryonic

stem cells
RAP ChIRP
Number
Experiment of contacts pSM33 ES, A R
in ATA data DMSO V6.5 ES, % ES, Ythdc1-cKO; | ES, Mettl3-WT, E14 ES, %
DMSO, % %
1 hour, %
GRID, ES, 522,741
M. musculus (109.371) 38.0 (46.5) 55.8 (61.6) 50.6 (51.0) 58.8 (58.3) 53.8 (57.0)
RADICL (1% FA), ES, 636,802
M. musculus (138.422) 42.9 (56.2) 61.5 (74.1) 50.4 (49.6) 58.9 (57.2) 55.1 (58.6)
RADICL (2% FA), ES, 484,878
M. musculus (99.985) 41.5 (51.0) 59.7 (69.0) 50.7 (49.6) 59.2 (58.2) 54.9 (56.8)

Note. Values in parentheses represent results for the ATA contacts from BaRDIC peaks. Bin size = 5000 bp.

Table 4. Percentage of the consistent JPX RNA contacts with chromatin in the ATA data (all contacts) when
compared with the JPX RNA contacts from OTA experiments (contacts from BaRDIC peaks) in mouse embryonic

stem cells
. Number of JPX contacts CHART, ES
Experiment in ATA data
mn do d3 a7
GRID, ES,
M. musculus 459 57.1 (0.05) 61.9 (0.22) 63.6 (0.002)
RADICL (1% FA), ES,
M. musculus 341 57.2 (0.09) 62.8 (0.15) 61.0 (0.03)
RADICL (2% FA), ES,
M. musculus 332 54.5 (0.24) 56.6 (0.65) 63.9 (0.005)

Note. Values in parentheses represent the p-value of concordance. Bin size = 5000 bp; d0, d3, and d7 correspond to O, 3,

and 7 days of cell differentiation, respectively.

on the X chromosome. The low number of contacts
did not allow application of the BaRDIC peak filter-
ing, which would likely have increased specificity
of the analysis.

The conducted analysis demonstrates fundamen-
tal possibility of cross-validation but also highlights its
limitations. Unfortunately, for the RNAs with average
level of interactions — which are of the greatest in-
terest for assessing specificity of the ATA methods -
comparative analysis with OTA was not possible due
to the lack of paired data under consistent biolog-
ical conditions. Thus, the OTA data serve as a reli-
able reference primarily for the highly interacting
RNAs, while assessing specificity of ATA for the rest
of interactome requires development of alternative
approaches.

Comparison of the OTA experiments. To as-
sess consistency of the OTA data, we conducted com-

parative analysis of the RNA-chromatin interaction
maps for various ncRNAs in human cells (Fig. 4) and
mouse cells (Fig. S11 in the Online Resource 1). As a
measure of similarity, we used the ratio of concor-
dant contacts to the total number of detected inter-
actions in the compared OTA experiments (Jaccard
index).

The analysis revealed clusters of high function-
al consistency, as well as overlaps, likely related to
the common principles of chromatin organization. In
the heatmap for human cells, distinct clusters were
observed, corresponding to the specific RNAs such
as MALAT1, NEAT1, and HOTAIR. The most striking
example of the expected similarity were the profiles
of MALAT1 and NEAT1. High concordance of their
chromatin contacts aligns well with their known co-
localization in the nucleus: NEAT1 serves as a struc-
tural basis of paraspeckles, while MALAT1 is a key

BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
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Fig. 4. Heatmap reflecting proportion of the concordant contacts (from BaRDIC peaks, FDR < 0.05) from “one-to-all” experi-
ments for the human cell lines. Non-significant enrichments (p > 0.05) are set to zero. Clustering is performed by cell types

and RNAs used in the experiment. Bin size = 1000 bp.

component of nuclear speckles [27, 28]. Both RNAs
are associated with active genes and are involved in
splicing regulation [16], which explains similarity in
their chromatin landscape.

Overlaps were also detected, for example, be-
tween the contacts of LINC02085 and DACORI.
LINCO02085 is involved in the NF-kB-dependent regu-
lation [29], while DACOR1 is implicated in maintain-
ing DNA methylation patterns [30], which may reflect
their joint involvement in epigenetic control.

At the same time, the analysis identified simi-
larity clusters lacking an obvious functional expla-
nation. For instance, profile of the telomerase RNA
TERC showed significant concordance with the RNAs
such as SRA1, SNHG1, and KCNQ10T1, for which di-
rect functional links are unknown. This result sug-
gests presence of the background noise. If we assume
that most of the detected RNA-chromatin interactions
are protein-mediated, low specificity of these contacts
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could be attributed not to the experimental methods
themselves but to the relatively low specificity of the
RNA-binding domains in the proteins [31, 32]. This
leads to similar association patterns for the function-
ally unrelated RNAs.

Unlike the human data, the mouse OTA data pri-
marily focus on the study of XIST. The observed high
concordance of the XIST profiles with the RNAs such
as its known activator JPX [26] serves as an addition-
al internal quality control for the data and confirms
specificity of the method for the functionally related
pairs (Fig. S11).

CONCLUSION

This study conducted comparative analysis of the
RNA-chromatin interactome data obtained using “all-
to-all” (ATA) and “one-to-all” (OTA) methods, focusing
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on evaluating their accuracy, completeness, and spec-
ificity.

We compared the genome-wide RNA-chromatin
interactome data (ATA) with the RNA-seq data and
introduced the concept of chromatin potential — a
numerical characteristic of individual RNAs that in-
dicates the extent to which the number of contacts
of a given RNA exceeds the expected number based
on the RNA-seq data. This metric allows filtering out
RNAs with predominantly non-specific interactions
due to the high expression levels. Setting a threshold
for chP significantly reduces proportion of mRNAs in
the interactome, effectively isolating RNAs with high-
er affinity for chromatin. It is important to note that
some mRNAs exhibit high chromatin potential, which
could indicate presence of unknown specific functions
or expression of the non-coding isoforms and unan-
notated intronic ncRNAs. Positive correlation of chP
with the contact reproducibility confirms that chro-
matin potential is not only a measure of specificity
but also a predictor of interaction reliability.

Comparison of the methods revealed fundamen-
tal differences in resolution (~5000 bp for ATA vs.
~1000 bp for OTA) and reproducibility. The developed
metric for replicate consistency showed that the OTA
data have high reproducibility (>90%), allowing them
to be used as a “gold standard.” In contrast, the ATA
data (except for GRID-seq) were characterized by low
concordance (<5-10%), indicating substantial incom-
pleteness.

It was found that completeness of the ATA data
is a function of sequencing depth for each specific
RNA. To achieve statistically significant reproducibil-
ity, the number of RNA contacts must exceed 10,000,
indicating the need for exceptionally deep sequencing
in the genome-wide experiments to reliably identify
interactome of the individual RNAs.

Critical influence of the fixation protocol was
demonstrated. It was shown that the use of the two-
step fixation with DSG/formaldehyde (GRID-seq) com-
pared to the fixation with formaldehyde alone (Red-C,
RADICL-seq) leads to the significant increase in the
proportion of reproducible signals. This suggests crit-
ical role of the protein complex stabilization in the
quality of ATA data.

In all types of experiments, preliminary selection
of contacts belonging to the peaks identified using
BaRDIC significantly increased the data consistency.
This proves that identifying statistically significant in-
teraction clusters is a powerful tool for separating the
biologically significant signals from the background
noise.

Based on these results, we recommend the follow-
ing approach to enhance reliability and significance
of conclusions when working with the RNA-chromatin
interactome data:

RYABYKH et al.

* When analyzing the OTA data, focus on the con-
tacts that have passed peak filtering (e.g., using
BaRDIC), as they demonstrate significantly high-
er specificity. The high overall reproducibility of
OTA data confirms their reliability as a reference.

* Note that chromatin potential selects promis-
ing RNAs, while concordance analysis and peak
searching select significant RNA-chromatin con-
tacts. Therefore, when analyzing the ATA data,
the strategy should be two-level:

1. First, select RNAs with high chromatin poten-
tial (chP > 20), focusing on the molecules with in-
creased probability of specific interactions with chro-
matin.

2. Second, select RNAs with more than 10,000
contacts and use only those contacts that both fall
into the BaRDIC peaks and are reproducible between
the replicates.

Thus, the combined use of chromatin potential
(for RNA selection) and concordant contacts from the
peaks (for genomic locus selection) maximizes filter-
ing of non-specific noise and highlights the most re-
liable interactions. The proposed approach enhances
reliability of bioinformatics analysis and interpreta-
tion of the RNA-chromatin interactome data, which
is particularly important for identifying functionally
significant associations.
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