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Abstract— Two types of experiments are used to study RNA-chromatin interactions: the interactome search 

for individual RNAs (“one-to-all” or OTA) and genome-wide contact mapping for all RNAs (“all-to-all” or ATA). 

Comparative analysis of ATA and OTA data revealed fundamental differences in resolution, completeness, 

and specificity. OTA data exhibit high resolution (~1000  bp) and reproducibility (>90%), serving as a “gold 

standard”. ATA data, however, have lower resolution (~5000  bp), and their reproducibility (<10%) is criti-

cally dependent on the protocol, with two-step fixation using disuccinimidyl glutarate and formaldehyde 

(GRID-seq) showing a clear advantage over formaldehyde alone. The introduced “chromatin potential” metric 

and BaRDIC peak filtering effectively isolate the specific signal. This study proposes a strategy for reliable in-

teractome analysis: combining RNA selection based on chromatin potential with the use of concordant contacts 

from peaks. 
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INTRODUCTION

Non-coding RNAs (ncRNAs) in animals and plants 
are involved in a wide range of biological process-
es, including cell differentiation, gene expression 
regulation, chromatin remodeling, chromatin struc-
ture maintenance, splicing, RNA processing, and bio-
molecular condensate formation. Disruptions in the 
ncRNA-mediated regulatory pathways are associated 
with the development of various diseases, emphasiz-
ing importance of understanding their mechanisms of 
action [1]. A significant portion of ncRNA functions is 
realized in the cell nucleus, necessitating a detailed 
study of the RNA-chromatin interactome.

RNA molecules interact with numerous proteins, 
chromatin, and other RNAs. Experimental methods 

to identify DNA loci in contact with ncRNAs can be 
divided into two groups: “one-to-all” (OTA) and “all-
to-all” (ATA). The first group (RAP  [2], CHART-seq  [3], 
ChIRP-seq  [4], dChIRP-seq  [5], ChOP-seq  [6], CHIRT-seq 
[7]) identifies contacts of a known RNA with chro-
matin, while the second group (MARGI  [8], GRID-seq 
[9], ChAR-seq  [10,  11], iMARGI  [12], RADICL-seq  [13], 
Red-C  [14]) aims to determine all possible RNA-DNA 
contacts in the cell [15].

Both groups of methods are actively used in re-
search, but typically not in combination thus prevent-
ing development of the unified standards to enhance 
reliability and significance of the RNA-chromatin in-
teractome data analysis. To date, there has been no 
systematic comparison of ATA and OTA data in terms 
of key characteristics such as accuracy, completeness, 
and specificity.

Despite the rapid development of these tech-
nologies, the resulting data are characterized by 
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Fig. 1. Accuracy of determining position of the real contact differs in ATA and OTA protocols. a)  Source of position bias in 
ATA data – chromatin structure. b)  In OTA, the observed contact position offset from the real position is determined only 
by the size of DNA fragments. c)  Possible source of non-specific interactions.

significant methodological issues and systematic bi-
ases. First, the density of RNA contacts depends on 
the distance between the RNA source gene and the 
target DNA loci on the same chromosome [9, 11-14, 
16]. This bias, termed “RNA-DNA scaling” (RD-scaling), 
is analogous to scaling in the DNA-DNA interactome 
data (Hi-C method) [17]. Second, chromatin accessi-
bility significantly influences the data, referred to 
as “background.” Background is assessed using “in-
put” data in OTA experiments or contacts of the pro-
tein-coding RNAs (mRNAs) in the ATA experiments [9]. 
Additionally, these experiments inherently have limit-
ed precision in determining contacts. In the ATA ex-
periments, RNA crosslinking with chromatin can occur 
at a distance from the real contact (Fig.  1a), whereas 
in the OTA experiments, precision of the contact po-
sition determination depends only on the size of DNA 
fragments (Fig.  1b). Presence of non-specific interac-
tions poses a particular problem. A significant portion 
of the observed contacts could be explained by elec-
trostatic attraction between the negatively charged 
RNA and positively charged histone tails, as well as 
by preferential crosslinking of amino groups present 
on the lysines and arginines of histones by formalde-
hyde [18]. Although affinity of such non-specific inter-
actions is relatively low, their cumulative contribution 
is substantial due to the large number of potential 
binding sites (Fig.  1c). On the other hand, technical 
limitations of the existing experimental methods re-
sult in the loss of some true contacts. These factors 
collectively raise questions about the specificity of the 
detected interactions and accuracy, completeness, and 
specificity of the RNA-chromatin interactome data.

The aim of this study is a systematic comparative 
analysis of data obtained by OTA and ATA methods 
to assess their accuracy, completeness, and specificity. 
The following objectives were addressed:

• development of metrics for assessing interaction 
specificity (chromatin potential, chP) and data re-
producibility (concordance);

• comparative analysis of replicate consistency 
within each method;

• cross-validation of data obtained by different 
methods;

• development of recommendations for improv-
ing the reliability of RNA-chromatin interactome 
analysis.

MATERIALS AND METHODS

Data. Human and mouse RNA-chromatin interac-
tome data were obtained from the RNA-Chrom data-
base [19]. Only ATA data with corresponding RNA-seq 
data from the same cell line were used. When more 
than two replicates were available in the ATA data, 
the two most complete replicates were selected. RNA-
seq data were obtained from the GEO database and 
processed similarly to the ATA data processing pro-
cedure described in the RNA-Chrom. List of the used 

data is provided in Tables  S1 and S2 in the Online 
Resource  1. Only RNAs demonstrating more than 1000 
contacts with chromatin in each replicate were includ-
ed in analysis to ensure sufficient statistical power for 
identifying “peaks” (genomic regions enriched with 
RNA-chromatin contacts) using the BaRDIC program 
[20]. Ribosomal RNAs were excluded from the analy-
sis. For example, applying this filter in the “RADICL, 
ES  (NPM)” and “RADICL, ES  (ActD)” experiments left 
fewer than 1000 RNAs and less than 50% of contacts 
from the initial size of the selected replicates (Fig.  S1, 
a  and  b in the Online Resource  1). Considering sig-
nificant overrepresentation of the proximal contacts 
(RD-scaling), interactions located within 1  Mb of the 
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genes encoding the corresponding RNAs were exclud-
ed from further analysis in this study.

Use of BaRDIC and threshold selection. Like 
most genome-wide data, RNA-chromatin interactome 
data are characterized by high level of non-specific 
signals (“noise”). Specialized peak-calling algorithms 
are used to identify significant interactions by de-
tecting statistically significant clusters of interactions 
in  the specific genomic loci.

In this study, we used the BaRDIC algorithm 
[20], which accounts for RD-scaling and chromatin 
openness. This algorithm uses a probabilistic esti-
mate of the likelihood that the contacts in a chroma-
tin locus belong to a peak or noise. The Benjamini–
Hochberg multiple testing correction (FDR, false dis-
covery rate) is next applied to control proportion of 
false positives based on the background distribution. 
However, in our case, significant overlap of signal 
and noise distributions leads to the loss of a sub-
stantial proportion of true interactions when using 
a strict FDR threshold. To avoid this problem, we 
used a flexible selection criterion: for each RNA, we 
selected top 10% of the peaks with the lowest FDR. 
Since peak sizes could reach tens of kilobases due 
to the data sparsity, all comparisons were conducted 
at the level of individual contacts intersecting these 
peaks.

For the ATA data analysis, BaRDIC was run with 
default parameters. For the OTA experiments, which 
have better contact coverage, the following parame-
ters were set: --trans_min 400  bp; --cis_start 100  bp; 
--trans_step 50  bp. Background was calculated using 
input data converted to BedGraph, with a window 
size of 1000  bp.

Chromatin potential. In nearly all studies in-
volving ATA experiments, it has been noted that the 
number of RNA contacts with chromatin linearly de-
pends on the expression level of the corresponding 
RNA [9-11, 13, 14]. Normalization by expression level 
allows us to identify RNAs that demonstrate an in-
creased tendency to interact with chromatin, i.e. the 
molecules with contact frequency significantly ex-
ceeding what would be expected at a given expres-
sion level.

To assess tendency of RNAs to contact chroma-
tin, we introduce the concept of “chromatin poten-
tial.” Let us consider RNAs that have more than 1000 
contacts in each replicate. Let Nc be the total number 
of contacts of selected RNAs in the ATA experiment 
accounting for the RD-scaling filter; Ne be the total 
number of uniquely mapped and gene-annotated 
reads in the RNA-seq experiment; nc

i be the number 
of contacts accounting for the RD-scaling filter of a 
specific i-th RNA in the ATA experiment; and ne

i be 
the number of reads of a specific i-th RNA in the 
RNA-seq experiment. To compare these observations, 

we  apply a Z-test for proportions. For each i-th RNA, 
we calculate the Z-statistic (Zi) (1):

 (1)

The Z-statistic follows a standard normal dis-
tribution, allowing us to estimate p-value and the 
Benjamini–Hochberg FDR. We refer to the Z-statistic 
value as the chromatin potential. Chromatin poten-
tial surpasses the simple ratio of the number of con-
tacts to the expression level because it accounts for 
the statistical significance of the deviation. The ratio 
of the number of contacts to the expression level is 
heavily biased toward RNAs with low coverage in the 
RNA-seq data, where the denominator (expression 
level) is estimated with significant error, leading to a 
wide scatter of values (up to six orders of magnitude; 
see  Fig.  S2 in the Online Resource  1).

However, the following circumstances must be 
considered. First, strand-specific total RNA sequenc-
ing with rRNA depletion is required for such analy-
sis. Second, this analysis is applicable only to long 
RNAs, as standard RNA-seq data do not allow for an 
adequate assessment of the expression level of RNAs 
shorter than 100 nucleotides [21].

RESULTS

Chromatin potential. In all genome-wide stud-
ies of RNA-chromatin interactions (ATA experiments), 
there is a significant predominance of mRNA contacts. 
This is because mRNAs generally have higher expres-
sion levels compared to ncRNAs. Chromatin potential 
(chP) addresses the question of whether the propor-
tion of contacts for a given RNA is statistically signifi-
cantly different from what would be expected if all 
RNAs contacted chromatin non-specifically and pro-
portionally to their expression levels. If most mRNA 
contacts with chromatin are non-specific, it can be 
expected that ncRNAs will demonstrate higher affinity 
for chromatin. As expected, most ncRNAs exhibited a 
chromatin potential greater than zero (Fig.  2a; Fig.  S3 
in the Online Resource  1), but a large number of 
mRNAs also had a positive chromatin potential. As the 
chP threshold increased, the proportion of mRNAs 
among the RNAs passing the threshold decreased 
(Fig.  2b; Table  S3 in the Online Resource  1) with a 
sharp drop in almost all experiments at chP  ≥  20.

The fact that even at high chromatin poten-
tial thresholds, a significant number of protein-cod-
ing RNAs remain may be due to several factors. 
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Fig. 2. Characteristics of RNA chromatin potential. a)  Dependence of chromatin potential on the number of RNA contacts 
in the Red-C K562 experiment. Blue – protein-coding RNAs, orange – non-coding RNAs. b)  Proportion of mRNAs depending 
on the chromatin potential threshold (chP > x) for different ATA experiments. The proportion of ncRNAs corresponds to 
1 minus the proportion of mRNAs. ActD – actinomycin D treatment; NPM – proteinase K treatment; 1% FA – fixation with 
1% formaldehyde; 2% FA – fixation with 2% formaldehyde.

For example, some protein-coding genes contain func-
tional ncRNAs in their intronic regions [22, 23], among 
which a significant number of unannotated ncRNAs 
can be expected. Positive chromatin potential of some 
mRNAs may be associated with these ncRNAs. On the 
other hand, non-coding isoforms of mRNAs may them-
selves play a role in chromatin regulation [24].

Comparison of replicates in ATA data. To as-
sess consistency of the RNA-chromatin interactions 
between replicates, we evaluated proportion of the 
reproducible contacts. Since the exact contact coordi-
nate in the ATA methods could be shifted due to the 
protocol specifics, we introduced a genomic distance 
parameter  (L), within which contacts belonging to the 
same RNA but detected in different replicates were 
considered concordant. To determine the L threshold 
that adequately reflects the method’s resolution, we 
calculated, for each RNA, proportion of its contacts 
for which at least one contact of the same RNA was 
detected in another replicate within the specified dis-
tance L. Analysis of this proportions dependence on 
L for the “GRID, ES, Mus musculus” data showed that 
the median proportion of concordant contacts ceased 
to increase significantly at L  ≥  5000  bp (Fig.  S4 in the 
Online Resource  1), reaching a plateau. This indicates 
that 5000  bp is an empirical estimate of contact po-
sitioning accuracy in the ATA methods. Based on this 
result, for subsequent analysis, we divided the genome 
into non-overlapping fragments (bins) of a fixed size 
(bin  bp). The main analysis was conducted with the 
bin size of 5000  bp, corresponding to the empirically 
estimated positioning accuracy. To test robustness of 

the results and simulate a “high-resolution” scenario, 
a bin size of 1000  bp was also used. A bin was con-
sidered concordant for a given RNA if at least one 
contact in that bin was detected in both replicates, 
and discordant if contacts were present in only one 
replicate. This approach allows data aggregation and 
quantitative assessment of interaction reproducibility 
at the level of genomic loci.

To assess randomness of the matches, we used 
a simple model. Assuming that, all RNAs contact ge-
nomic DNA uniformly, the probability of at least one 
contact falling into a bin in one experiment can be 
estimated as pbin

e(i)  =  ni
e /Nbin, where i is the RNA 

index; e is the experiment (replicate) number; ni
e is 

the number of bins with contacts of the i-th RNA; 
Nbin is the total number of bins into which the cor-
responding genome was divided. Here, we neglect 
biases in the data, particularly chromatin accessibili-
ty, and assume that the bin size is sufficiently small. 
To avoid the influence of RD-scaling, we selected 
bins located more than 1 Mb away from the gene 
source of the i-th RNA. The probability that contacts 
of the i-th RNA from two experiments (a and b) fall 
into the same bin is pbin(i)  =  pbin

a(i) ∙pbin
b(i). A rough 

estimate of the probability of observing k matching 
bins can be made using the Bernoulli distribution  (2):

. (2)

This allows for a probabilistic assessment of 
the correspondence between the replicates or ex-
periments. We define λ(i)  =  (ni

ani
b /Nbin). For λ  ≥  10, 
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a normal approximation can be used to estimate the 
probability of such event assuming that replicates 
have independent contacts (3):

. (3)

For λ  <  10, a Poisson approximation is used (4):

. (4)

To assess consistency of the replicates in the ATA 
experiments, we analyzed a set of RNAs with more 
than 1000 contacts with chromatin in each replicate. 
When selecting RNAs, the filter to exclude RD-scaling 
regions (within 1  Mb of the RNA source gene) was 
not applied; it was applied when selecting contacts. 
Importantly, we assessed not just presence of at least 
one concordant bin but statistical significance of the 
overall level of concordance for each RNA as a whole. 
For this, we counted total number of the concordant 

and discordant bins for each RNA and applied a sta-
tistical criterion to test the hypothesis of non-ran-
domness of the observed level of matches (see above 
for details). An RNA was considered concordant if its 
calculated FDR was less than 0.05. As seen in Fig.  S5 
in the Online Resource  1, presence of the individual 
concordant bins does not guarantee passing this strict 
significance threshold.

Table  1 and Fig.  S6 in the Online Resource  1 show 
the number of RNAs with concordant bins between 
the replicates with FDR < 0.05. The analysis was con-
ducted under four conditions to assess the influence 
of two factors: genome bin size (1000  bp vs. 5000  bp) 
and contact filtering (all contacts vs. contacts from 
BaRDIC peaks). For the GRID experiments, neither of 
these conditions had an effect: the number of concor-
dant RNAs remained unchanged and almost always 
equal to the initial number of selected RNAs (discus-
sion below).

For other ATA data, as expected, when using 
all contacts, the number of statistically significantly 

Table 1. Number of RNAs with concordant bins in the replicates (FDR  <  0.05)

Experiment
Initial number 

of mRNAs 
(ncRNAs)

Number of concordant mRNAs 
(ncRNAs), all contacts

Number of concordant mRNAs 
(ncRNAs), contacts from peaks

Bin 1000  bp Bin 5000  bp Bin 1000  bp Bin 5000  bp

Red-C, K562, 
H.  sapiens

3230 (636) 1571 (341) 2418 (486) 2779 (556) 3188 (628)

GRID, MM.1S, 
H.  sapiens

3771 (413) 3771 (413) 3771 (413) 3771 (413) 3771 (413)

GRID, MDA_MB_231, 
H.  sapiens

4844 (653) 4844 (653) 4844 (653) 4844 (653) 4844 (653)

GRID, ES, 
M.  musculus

4706 (436) 4706 (429) 4706 (427) 4706 (432) 4706 (435)

RADICL (2%  FA), ES, 
M.  musculus

2758 (162) 1829 (87) 2552 (124) 2226 (131) 2704 (158)

RADICL, OPC, 
M.  musculus

2580 (197) 1954 (136) 2484 (175) 2203 (161) 2555 (191)

RADICL (ActD), ES, 
M.  musculus

657 (87) 345 (42) 576 (76) 512 (74) 646 (86)

RADICL (NPM), OPC, 
M.  musculus

3734 (275) 504 (40) 1464 (103) 2128 (136) 2839 (200)

RADICL (1%  FA), ES, 
M.  musculus

2079 (117) 1533 (66) 1986 (80) 1811 (102) 2056 (115)

RADICL (NPM), ES, 
M.  musculus

643 (149) 643 (149) 643 (149) 643 (148) 643 (148)

Note. Only RNAs with more than 1000 contacts in each replicate were selected. A filter was applied to exclude contacts 
within 1  Mb of the RNA source gene.
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concordant RNAs was substantially lower under the 
strict condition (bin size  =  1000  bp) compared to the 
condition corresponding to the method’s resolution 
(bin size  =  5000  bp). This confirms that a larger bin 
better aggregates technical variations and more ac-
curately reflects interaction reproducibility. The most 
important observation was that preliminary selection 
of the contacts belonging to BaRDIC peaks significant-
ly increased replicate consistency. This filtering either 
increased the number of concordant RNAs or allowed 
achieving a comparable level of concordance even 
when using a strict bin size of 1000  bp compared to 
analyzing all contacts with the bin size of 5000  bp. 
Thus, identifying RNA-chromatin interaction peaks 
using BaRDIC effectively filters out random interac-
tions and highlights the most reliable, reproducible 
RNA-chromatin contacts, significantly increasing con-
sistency between the replicates.

After identifying statistically significant concor-
dant RNAs, we assessed completeness of the ATA data 
by calculating the median proportion of contacts that 
fall into concordant 5000-bp bins, which corresponds 
to the estimated resolution of the ATA methods. This 
metric reflects proportion of interactions reproduc-
ible between the replicates out of the total number 
of detected contacts (Tables  S4 and  S5 in the Online 
Resource  1).

Fundamental differences between the methods 
were identified. Completeness of the data for the 
Red-C and RADICL-seq did not exceed 2% when an-
alyzing all contacts and 5% for the contacts filtered 
by the BaRDIC peaks. In contrast, completeness of 
the GRID-seq data was significantly higher, reaching 
29%  and 82% for all contacts and contacts from the 
peaks, respectively.

High reproducibility of the GRID data could likely 
be explained by the specifics of the fixation proto-
col. Unlike the methods that use only formaldehyde 
(such as Red-C and RADICL-seq), the GRID-seq proto-
col employs a two-step fixation with disuccinimidyl 
glutarate (DSG) and formaldehyde. DSG is a crosslink-
ing agent with a long spacer (7.7  Å), which effective-
ly crosslinks protein-protein interactions, stabilizing 
protein complexes before the chromatin structure is 
fixed with formaldehyde [25]. This allows for more 
effective “sealing” of protein-mediated RNA-chromatin 
interactions, which constitute majority of the specific 
contacts.

This hypothesis is quantitatively supported. De-
spite the comparability of the medians of the total 
number of contacts of concordant RNAs across all 
ATA data (Fig.  S7a in the Online Resource  1), the me-
dian number of reproducible (concordant) contacts in 
the GRID-seq data was an order of magnitude higher 
than the corresponding indicators for the Red-C and 
RADICL- seq data (Fig.  S7b in the Online Resource  1). 

This indicates that the DSG protocol not only increas-
es the volume of data but fundamentally enhances 
proportion of the specific, reproducible signals in 
the overall dataset. Thus, the protocol with addition-
al DSG treatment ensures more complete and stable 
capture of multiprotein complexes, leading to the sig-
nificant reduction in technical noise and increased 
reproducibility between the replicates. Meanwhile, 
fixation with formaldehyde alone may inadequately 
stabilize large supramolecular complexes, which, in 
turn, increases the proportion of random, unstable 
interactions and reduces overall concordance.

Despite the fundamental differences in the abso-
lute level of concordance between the methods, we 
found a common pattern for all ATA experiments: re-
producibility of contacts positively correlates with the 
total number of RNA interactions and its chromatin 
potential (Fig.  3; Fig.  S8 in the Online Resource  1). The 
discovered dependency allows us to draw two import-
ant conclusions about the nature of RNA-chromatin 
interactome data:

1. Completeness of the data is a function of se-
quencing depth for a specific RNA. Low reproducibility 
of RNAs with a small number of contacts (<10,000) in-
dicates that for such molecules, the data are substan-
tially incomplete and contain a high level of noise. 
Sufficient completeness is achieved only with large 
number of interactions, indicating the need for deep 
sequencing to reliably identify interactome of the in-
dividual RNAs.

2. Reproducibility is a marker of biological sig-
nificance. Positive correlation between the chromatin 
potential and the proportion of concordant contacts 
suggests that the more specific is the interaction 
(higher chromatin potential), the more stable and re-
producible it is between replicates. This strengthens 
the position of chromatin potential not only as a mea-
sure of specificity but also as a predictor of reliability 
and reproducibility of interactions.

It is also worth noting that the median propor-
tions of concordance of contacts between mRNAs and 
ncRNAs were practically indistinguishable (Tables  S4 
and  S5, columns 1 and 4 in the Online Resource  1), 
indicating that reproducibility does not depend on the 
RNA biotype. To interpret the unexpectedly high lev-
el of concordance of the mRNA contacts, comparable 
to that of ncRNAs, two non-exclusive hypotheses have 
been proposed:

1. Existence of non-specific but statistically re-
producible interactions, where electrostatic or other 
weak forces may lead to massive yet stable binding 
of RNA to chromatin.

2. Presence of unknown specific functions in 
some mRNAs related to direct interaction with chro-
matin (e.g., mediated by non-coding isoforms or un-
annotated intronic ncRNAs).
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Fig. 3. Dependence of replicate concordance on the number of contacts and chromatin potential. a and b)  Concordance 
calculated for all contacts. c and d)  Concordance calculated for contacts from BaRDIC peaks. Data from Red-C on K-562 
cells, bin size = 5000  bp. MALAT1 is not shown in the graph because this RNA has extreme values of chromatin potential 
and proportion of concordant contacts: 991 and 58.2% – panels (a) and (b); 740 and 71.9% – panels (c) and (d).

Comparison of replicates in the OTA data. To 
assess reproducibility of the experiments with indi-
vidual RNAs, we analyzed consistency of the repli-
cates in the corresponding datasets (Table  2; Fig.  S9 
in the Online Resource  1). First, the expected high 
level of reproducibility was confirmed: in the com-
plete OTA dataset, proportion of the concordant con-
tacts between the replicates exceeded 90% even at a 

bin size of 1000  bp. This indicates that the OTA data 
have resolution of 1000  bp and high completeness. 
Second, a critically important aspect of signal spec-
ificity was identified. When the analysis was limited 
to only those contacts that fall into peaks identified 
by the BaRDIC program (which filters out rare, single 
contacts in favor of statistically significant clusters), 
the level of concordance dropped by nearly half. 
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Table 2. Proportion of concordant contacts in the OTA replicates (%)

RNA Experiment

Bin  =  1000  bp Bin  =  5000  bp

All contacts, 
%

Contacts from 
peaks, %

All contacts, 
%

Contacts 
from peaks, %

JPX
CHART, ES  d0 
(GSM4278791, GSM4278795)

99.5 53.3 100.0 78.2

JPX
CHART, ES  d3 
(GSM4278799, GSM4278803)

99.3 36.8 100.0 70.6

JPX
CHART, ES  d7 
(GSM4278807, GSM4278811)

99.2 44.5 100.0 75.0

MALAT1
ChIRP, ES, genotype: Ythdc1-cKO 
(conditional); treatment: DMSO, 
(GSM4669091, GSM4669092)

79.9 26.9 99.6 50.6

MALAT1
ChIRP, ES, genotype: Mettl3-WT, 
(GSM4875651, GSM4875652)

92.4 40.9 99.9 66.3

Note. d0, d3, and d7 correspond to 0, 3, and 7 days of cell differentiation, respectively; p  <  0.05.

This sharp decline suggests that the significant pro-
portion (more than half) of all detected contacts, in-
cluding the concordant ones, in the OTA experiments 
are likely non-specific.

Comparative analysis of reproducibility be-

tween the ATA and OTA methods. Comparative 
analysis of reproducibility between the ATA and OTA 
methods allows us to draw the following conclusions:

1. ATA data (except GRID) are characterized by 
low reproducibility between the replicates (median 
proportion of concordant contacts <5%), indicating 
their substantial incompleteness.

2. OTA data, on the other hand, demonstrate high 
reproducibility (>90%), confirming their completeness 
and allowing them to be considered as a reliable ref-
erence (“gold standard”) for validating interactions 
identified in the genome-wide approaches (ATA data).

Comparison of ATA and OTA experiments. 
High reproducibility of the OTA data, demonstrated 
in the previous section, allows their use as a ref-
erence to assess the degree of consistency between 
the genome-wide approach data (ATA) and this ref-
erence. Conducting such comparative analysis comes 
with the significant limitations, as it requires avail-
ability of both types of data for the same RNAs in 
the identical cell lines and under similar cultivation 
conditions, as well as sufficient number of contacts in 
the ATA data to ensure statistical power. The publicly 
available OTA data matching the conditions of ATA 
experiments were found only for two RNAs: MALAT1 
and JPX.

For the ncRNAs MALAT1 and JPX, we conduct-
ed comparison using bins with 5000-bp size. As a 
measure of consistency, we calculated proportion of 

the contacts from the ATA data that fell into bins en-
riched with the contacts from the BaRDIC peaks of 
the corresponding OTA experiment. The analysis was 
performed for all ATA contacts as well as for the sub-
set filtered by the BaRDIC peaks. The sets of contacts 
from the ATA replicates were combined to increase 
data power. The results for the ncRNA MALAT1 are 
presented in Table  3 and Fig.  S10 in the Online Re-
source  1, and for the ncRNA JPX in Table  4.

For the ncRNA MALAT1, which exhibits an ex-
tremely high level of interactions in the ATA data, 
a significant proportion (~50%) of overlaps with the 
OTA data was identified, indicating good consistency 
between the methods. However, approximately half 
of the MALAT1 contacts detected solely by the ATA 
method are not confirmed by the independent OTA 
method. This allows us to estimate proportion of 
non-specific signals in the ATA data for this RNA as 
~50%. Importantly, in this case, we do not observe a 
significant advantage of the GRID-seq method, which 
was so evident in the analysis of the ATA replicate 
consistency. This is likely because the total number 
of contacts and their reproducibility for MALAT1 are 
so high in all ATA experiments that the effect of the 
more specific fixation protocol is overshadowed by 
the dominant signal.

The situation for the ncRNA JPX, characterized 
by low level of contacts in the ATA data, is funda-
mentally different. Overlap with the OTA data was 
~60%, allowing us to roughly estimate proportion 
of non-specific contacts as ~40%. The low absolute 
number of contacts makes this estimate less reli-
able. As expected, based on the known association of 
JPX with XIST [26], most of its contacts are localized 
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Table  3. Percentage of the consistent MALAT1 RNA contacts with chromatin in the ATA data when compared 
with the MALAT1 RNA contacts from the OTA experiments (contacts from BaRDIC peaks) in mouse embryonic 
stem cells

Experiment
Number 

of  contacts 
in  ATA data

RAP ChIRP

pSM33  ES, 
DMSO 

1  hour, %
V6.5 ES, %

ES, Ythdc1-cKO; 
DMSO, %

ES, Mettl3-WT, 
%

E14 ES, %

GRID, ES, 
M.  musculus

522,741
(109,371)

38.0 (46.5) 55.8 (61.6) 50.6 (51.0) 58.8 (58.3) 53.8 (57.0)

RADICL (1%  FA), ES, 
M.  musculus

636,802
(138,422)

42.9 (56.2) 61.5 (74.1) 50.4 (49.6) 58.9 (57.2) 55.1 (58.6)

RADICL (2%  FA), ES, 
M.  musculus

484,878
(99,985)

41.5 (51.0) 59.7 (69.0) 50.7 (49.6) 59.2 (58.2) 54.9 (56.8)

Note. Values in parentheses represent results for the ATA contacts from BaRDIC peaks. Bin size = 5000  bp.

Table  4. Percentage of the consistent JPX RNA contacts with chromatin in the ATA data (all contacts) when 
compared with the JPX RNA contacts from OTA experiments (contacts from BaRDIC peaks) in mouse embryonic 
stem cells

Experiment
Number of JPX contacts 

in ATA data

CHART, ES

d0 d3 d7

GRID, ES, 
M.  musculus

459 57.1 (0.05) 61.9 (0.22) 63.6 (0.002)

RADICL (1%  FA), ES, 
M.  musculus

341 57.2 (0.09) 62.8 (0.15) 61.0 (0.03)

RADICL (2%  FA), ES, 
M.  musculus

332 54.5 (0.24) 56.6 (0.65) 63.9 (0.005)

Note. Values in parentheses represent the p-value of concordance. Bin size = 5000  bp; d0, d3, and d7 correspond to 0, 3, 
and  7 days of cell differentiation, respectively.

on the X chromosome. The low number of contacts 
did not allow application of the BaRDIC peak filter-
ing, which would likely have increased specificity 
of the analysis.

The conducted analysis demonstrates fundamen-
tal possibility of cross-validation but also highlights its 
limitations. Unfortunately, for the RNAs with average 
level of interactions – which are of the greatest in-
terest for assessing specificity of the ATA methods  – 
comparative analysis with OTA was not possible due 
to the lack of paired data under consistent biolog-
ical conditions. Thus, the OTA data serve as a reli-
able reference primarily for the highly interacting 
RNAs, while assessing specificity of ATA for the rest 
of interactome requires development of alternative 
approaches.

Comparison of the OTA experiments. To as-
sess consistency of the OTA data, we conducted com-

parative analysis of the RNA-chromatin interaction 
maps for various ncRNAs in human cells (Fig.  4) and 
mouse cells (Fig.  S11 in the Online Resource  1). As a 
measure of similarity, we used the ratio of concor-
dant contacts to the total number of detected inter-
actions in the compared OTA experiments (Jaccard 
index).

The analysis revealed clusters of high function-
al consistency, as well as overlaps, likely related to 
the common principles of chromatin organization. In 
the heatmap for human cells, distinct clusters were 
observed, corresponding to the specific RNAs such 
as MALAT1, NEAT1, and HOTAIR. The most striking 
example of the expected similarity were the profiles 
of MALAT1 and NEAT1. High concordance of their 
chromatin contacts aligns well with their known co-
localization in the nucleus: NEAT1 serves as a struc-
tural basis of paraspeckles, while MALAT1 is a key 
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Fig. 4. Heatmap reflecting proportion of the concordant contacts (from BaRDIC peaks, FDR < 0.05) from “one-to-all” experi-
ments for the human cell lines. Non-significant enrichments (p > 0.05) are set to zero. Clustering is performed by cell types 
and RNAs used in the experiment. Bin size = 1000  bp.

component of nuclear speckles [27, 28]. Both RNAs 
are associated with active genes and are involved in 
splicing regulation [16], which explains similarity in 
their chromatin landscape.

Overlaps were also detected, for example, be-
tween the contacts of LINC02085 and DACOR1. 
LINC02085 is involved in the NF-κB-dependent regu-
lation [29], while DACOR1 is implicated in maintain-
ing DNA methylation patterns [30], which may reflect 
their joint involvement in epigenetic control.

At the same time, the analysis identified simi-
larity clusters lacking an obvious functional expla-
nation. For instance, profile of the telomerase RNA 
TERC showed significant concordance with the RNAs 
such as SRA1, SNHG1, and KCNQ1OT1, for which di-
rect functional links are unknown. This result sug-
gests presence of the background noise. If we assume 
that most of the detected RNA-chromatin interactions 
are protein-mediated, low specificity of these contacts 

could be attributed not to the experimental methods 
themselves but to the relatively low specificity of the 
RNA-binding domains in the proteins [31, 32]. This 
leads to similar association patterns for the function-
ally unrelated RNAs.

Unlike the human data, the mouse OTA data pri-
marily focus on the study of XIST. The observed high 
concordance of the XIST profiles with the RNAs such 
as its known activator JPX [26] serves as an addition-
al internal quality control for the data and confirms 
specificity of the method for the functionally related 
pairs (Fig.  S11).

CONCLUSION

This study conducted comparative analysis of the 
RNA-chromatin interactome data obtained using “all-
to-all” (ATA) and “one-to-all” (OTA) methods, focusing 
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on evaluating their accuracy, completeness, and spec-
ificity.

We compared the genome-wide RNA-chromatin 
interactome data (ATA) with the RNA-seq data and 
introduced the concept of chromatin potential – a 
numerical characteristic of individual RNAs that in-
dicates the extent to which the number of contacts 
of a given RNA exceeds the expected number based 
on the RNA-seq data. This metric allows filtering out 
RNAs with predominantly non-specific interactions 
due to the high expression levels. Setting a threshold 
for chP significantly reduces proportion of mRNAs in 
the interactome, effectively isolating RNAs with high-
er affinity for chromatin. It is important to note that 
some mRNAs exhibit high chromatin potential, which 
could indicate presence of unknown specific functions 
or expression of the non-coding isoforms and unan-
notated intronic ncRNAs. Positive correlation of chP 
with the contact reproducibility confirms that chro-
matin potential is not only a measure of specificity 
but also a predictor of interaction reliability.

Comparison of the methods revealed fundamen-
tal differences in resolution (~5000  bp for ATA vs. 
~1000 bp for OTA) and reproducibility. The developed 
metric for replicate consistency showed that the OTA 
data have high reproducibility (>90%), allowing them 
to be used as a “gold standard.” In contrast, the ATA 
data (except for GRID-seq) were characterized by low 
concordance (<5-10%), indicating substantial incom-
pleteness.

It was found that completeness of the ATA data 
is a function of sequencing depth for each specific 
RNA. To achieve statistically significant reproducibil-
ity, the number of RNA contacts must exceed 10,000, 
indicating the need for exceptionally deep sequencing 
in the genome-wide experiments to reliably identify 
interactome of the individual RNAs.

Critical influence of the fixation protocol was 
demonstrated. It was shown that the use of the two-
step fixation with DSG/formaldehyde (GRID-seq) com-
pared to the fixation with formaldehyde alone (Red-C, 
RADICL-seq) leads to the significant increase in the 
proportion of reproducible signals. This suggests crit-
ical role of the protein complex stabilization in the 
quality of ATA data.

In all types of experiments, preliminary selection 
of contacts belonging to the peaks identified using 
BaRDIC significantly increased the data consistency. 
This proves that identifying statistically significant in-
teraction clusters is a powerful tool for separating the 
biologically significant signals from the background 
noise.

Based on these results, we recommend the follow-
ing approach to enhance reliability and significance 
of conclusions when working with the RNA-chromatin 
interactome data:

• When analyzing the OTA data, focus on the con-
tacts that have passed peak filtering (e.g., using 
BaRDIC), as they demonstrate significantly high-
er specificity. The high overall reproducibility of 
OTA data confirms their reliability as a reference.

• Note that chromatin potential selects promis-
ing RNAs, while concordance analysis and peak 
searching select significant RNA-chromatin con-
tacts. Therefore, when analyzing the ATA data, 
the strategy should be two-level:
1. First, select RNAs with high chromatin poten-

tial (chP  >  20), focusing on the molecules with in-
creased probability of specific interactions with chro-
matin.

2. Second, select RNAs with more than 10,000 
contacts and use only those contacts that both fall 
into the BaRDIC peaks and are reproducible between 
the replicates.

Thus, the combined use of chromatin potential 
(for RNA selection) and concordant contacts from the 
peaks (for genomic locus selection) maximizes filter-
ing of non-specific noise and highlights the most re-
liable interactions. The proposed approach enhances 
reliability of bioinformatics analysis and interpreta-
tion of the RNA-chromatin interactome data, which 
is particularly important for identifying functionally 
significant associations.
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