
KALININA et al.814
BIOCHEMISTRY (Moscow) Vol. 90 No. 6 2025
prospects, Annu. Rev. Phytopathol., 48, 269-291,
https://doi.org/10.1146/annurev-phyto-073009-114430.
20. Thompson, J. R., and Tepfer, M. (2010) Chapter 2 –
assessment of the benefits and risks for engineered
virus resistance, InAdvances in Virus Research (Carr,
J. P., and Loebenstein, G., eds) pp. 33-56, Academic
Press, https://doi.org/10.1016/S0065-3527(10)76002-4.
21. Wang, M.-B., Masuta,C., Smith, N.A., and Shimura,H.
(2012) RNA silencing and plant viral diseases, Mol.
Plant Microbe Interact., 25, 1275-1285, https://
doi.org/10.1094/MPMI-04-12-0093-CR.
22. Morozov, S.Yu., Solovyev, A.G., Kalinina, N. O., and
Taliansky, M. (2019) Double-stranded RNAs in plant
protection against pathogenic organisms and virus-
es in agriculture, Acta Naturae, 11, 13-21, https://
doi.org/10.32607/20758251-2019-11-4-13-21.
23. Zhang,B., Li,W., Zhang,J., Wang,L., and Wu,J. (2019)
Roles of small RNAs in virus-plant interactions, Virus-
es, 11, 827, https://doi.org/10.3390/v11090827.
24. Taning, C. N., Arpaia, S., Christiaens, O., Dietz-
Pfeilstetter, A., Jones, H., Mezzetti, B., Sabbadini, S.,
Sorteberg,H., Sweet, J., Ventura, V., and Smagghe, G.
(2020) RNA-based biocontrol compounds: current
status and perspectives to reach the market, Pest
Manag. Sci., 76, 841-845, https://doi.org/10.1002/
ps.5686.
25. Zhan, X., Zhang, F., Li, N., Xu, K., Wang, X., Gao, S.,
Yin, Y., Yuan, W., Chen, W., Ren, Z., Yao, M., and
Wang,F. (2024) CRISPR/Cas: an emerging toolbox for
engineering virus resistance in plants, Plants, 13,
3313, https://doi.org/10.3390/plants13233313.
26. Makarova, S.S., Khromov, A. V., Spechenkova, N. A.,
Taliansky, M. E., and Kalinina, N. O. (2018) Appli-
cation of the CRISPR/Cas system for generation of
pathogen-resistant plants, Biochemistry (Moscow), 83,
1552-1562, https://doi.org/10.1134/S0006297918120131.
27. Bhaya, D., Davison, M., and Barrangou, R. (2011)
CRISPR-Cas systems in bacteria and archaea: versa-
tile small RNAs for adaptive defense and regulation,
Annu. Rev. Genet., 45, 273-297, https://doi.org/10.1146/
annurev-genet-110410-132430.
28. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M.,
DiCarlo, J. E., Norville, J. E., and Church, G. M.
(2013) RNA-guided human genome engineering via
Cas9, Science, 339, 823-826, https://doi.org/10.1126/
science.1232033.
29. Mahas,A., and Mahfouz,M. (2018) Engineering virus
resistance via CRISPR-Cas systems, Curr. Opin. Virol.,
32, 1-8, https://doi.org/10.1016/j.coviro.2018.06.002.
30. Kis,A., Hamar, É., Tholt,G., Bán, R., and Havelda, Z.
(2019) Creating highly efficient resistance against
wheat dwarf virus in barley by employing CRISPR/
Cas9 system, Plant Biotechnol. J., 17, 1004-1006,
https://doi.org/10.1111/pbi.13077.
31. Liu, H., Soyars, C. L., Li, J., Fei, Q., He, G., Peterson,
B. A., Meyers, B. C., Nimchuk, Z. L., and Wang, X.
(2018) CRISPR/Cas9-mediated resistance to cauli-
flower mosaic virus, Plant Direct, 2, e00047, https://
doi.org/10.1002/pld3.47.
32. Zhang,T., Zheng,Q., Yi,X., An,H., Zhao,Y., Ma,S., and
Zhou, G. (2018) Establishing RNA virus resistance in
plants by harnessing CRISPR immune system, Plant
Biotechnol. J., 16, 1415-1423, https://doi.org/10.1111/
pbi.12881.
33. Zhang, T., Zhao, Y., Ye, J., Cao, X., Xu, C., Chen, B.,
An, H., Jiao, Y., Zhang, F., Yang, X., and Zhou, G.
(2019) Establishing CRISPR/Cas13a immune system
conferring RNA virus resistance in both dicot and
monocot plants, Plant Biotechnol. J., 17, 1185, https://
doi.org/10.1111/pbi.13095.
34. Bastet, A., Robaglia,C., and Gallois, J.-L. (2017) eIF4E
resistance: natural variation should guide gene ed-
iting, Trends Plant Sci., 22, 411-419, https://doi.org/
10.1016/j.tplants.2017.01.008.
35. Chandrasekaran,J., Brumin,M., Wolf,D., Leibman,D.,
Klap, C., Pearlsman, M., Sherman, A., Arazi, T., and
Gal-On, A. (2016) Development of broad virus re-
sistance in non-transgenic cucumber using CRISPR/
Cas9 technology, Mol. Plant Pathol., 17, 1140-1153,
https://doi.org/10.1111/mpp.12375.
36. Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B.,
Slamet-Loedin,I., Čermák,T., Voytas, D.F., Choi, I.R.,
and Chadha-Mohanty, P. (2018) Novel alleles of rice
eIF4G generated by CRISPR/Cas9-targeted mutagene-
sis confer resistance to Rice tungro spherical virus,
Plant Biotechnol. J., 16, 1918-1927, https://doi.org/
10.1111/pbi.12927.
37. Gomez, M. A., Lin, Z. D., Moll, T., Chauhan, R. D.,
Hayden, L., Renninger, K., Beyene, G., Taylor, N. J.,
Carrington, J. C., Staskawicz, B. J., and Bart, R. S.
(2019) Simultaneous CRISPR/Cas9-mediated editing of
cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces
cassava brown streak disease symptom severity and
incidence, Plant Biotechnol. J., 17, 421-434, https://
doi.org/10.1111/pbi.12987.
38. Pyott, D. E., Sheehan, E., and Molnar, A. (2016) En-
gineering of CRISPR/Cas9-mediated potyvirus re-
sistance in transgene-free Arabidopsis plants, Mol.
Plant Pathol., 17, 1276-1288, https://doi.org/10.1111/
mpp.12417.
39. Bastet,A., Zafirov,D., Giovinazzo,N., Guyon- Debast,A.,
Nogué,F., Robaglia, C., and Gallois,J. (2019) Mimick-
ing natural polymorphism in eIF4E by CRISPR-Cas9
base editing is associated with resistance to poty-
viruses, Plant Biotechnol. J., 17, 1736-1750, https://
doi.org/10.1111/pbi.13096.
40. Pramanik, D., Shelake, R. M., Park, J., Kim, M. J.,
Hwang, I., Park, Y., and Kim, J. (2021) CRISPR/
Cas9-mediated generation of pathogen-resistant to-
mato against tomato yellow leaf curl virus and
powdery mildew, Int.J. Mol. Sci., 22, 1878, https://
doi.org/10.3390/ijms22041878.