
CRISPR/Cas13 IN INFLUENZA AND SARS-CoV-2 THERAPY 801
BIOCHEMISTRY (Moscow) Vol. 90 No. 6 2025
9. Li, H., Wang,S., Dong,X., Li,Q., Li,M., Li,J., Guo,Y.,
Jin,X., Zhou,Y., Song,H., and Kou,Z. (2020) CRISPR-
Cas13a cleavage of dengue virus NS3 gene efficiently
inhibits viral replication, Mol. Ther. Nucleic Acids, 19,
1460-1469, https://doi.org/10.1016/j.omtn.2020.01.028.
10. Abbott, T.R., Dhamdhere,G., Liu,Y., Lin,X., Goudy,L.,
Zeng, L., Chemparathy,A., Chmura,S., Heaton, N.S.,
Debs, R., Pande, T., Endy, D., La Russa, M. F., Lewis,
D.B., and Qi, L. S. (2020) Development of CRISPR as
an antiviral strategy to combat SARS-CoV-2 and influ-
enza, Cell, 181, 865-876.e12, https://doi.org/10.1016/
j.cell.2020.04.020.
11. Zeng,L., Liu,Y., Nguyenla, X.H., Abbott, T.R., Han,M.,
Zhu, Y., Chemparathy, A., Lin, X., Chen, X., Wang,H.,
Rane, D.A., Spatz, J.M., Jain,S., Rustagi,A., Pinsky,B.,
Zepeda, A. E., Kadina, A. P., Walker, J. A., 3rd,
Holden,K., Temperton,N., Cochran, J.R., Barron, A.E.,
Connolly, M.D., Blish, C.A., Lewis, D.B., Stanley, S.A.,
La Russa, M. F., and Qi, L. S. (2022) Broad-spectrum
CRISPR-mediated inhibition of SARS-CoV-2 variants
and endemic coronaviruses in vitro, Nat. Commun.,
13, 2766, https://doi.org/10.1038/s41467-022-30546-7.
12. Nguyen, H., Wilson, H., Jayakumar, S., Kulkarni, V.,
and Kulkarni, S. (2021) Efficient inhibition of HIV
using CRISPR/Cas13d nuclease system, Viruses, 13,
1850, https://doi.org/10.3390/v13091850.
13. Chaves, L. C. S., Orr-Burks, N., Vanover, D., Mosur,
V.V., Hosking, S.R., Kumar, P.E.K., Jeong,H., Jung,Y.,
Assumpção, J. A. F., Peck, H. E., Nelson, S. L., Burke,
K. N., Garrison, M. A., Arthur, R. A., Claussen, H.,
Heaton, N.S., Lafontaine, E.R., Hogan, R.J., Zurla,C.,
and Santangelo, P. J. (2024) mRNA-encoded Cas13
treatment of influenza via site-specific degradation
of genomic RNA, PLoS Pathog., 20, e1012345, https://
doi.org/10.1371/journal.ppat.1012345.
14. Méndez-Mancilla, A., Wessels, H. H., Legut, M.,
Kadina, A., Mabuchi, M., Walker, J., Robb, G. B.,
Holden, K., and Sanjana, N. E. (2022) Chemically
modified guide RNAs enhance CRISPR-Cas13 knock-
down in human cells, Cell Chem. Biol., 29, 321-327.e4,
https://doi.org/10.1016/j.chembiol.2021.
15. Gorbalenya, A. E., Enjuanes, L., Ziebuhr, J., and
Snijder, E. J. (2006) Nidovirales: evolving the largest
RNA virus genome, Virus Res., 117, 17-37, https://
doi.org/10.1016/j.virusres.2006.01.017.
16. Imbert,I., Guillemot, J.C., Bourhis, J.M., Bussetta,C.,
Coutard, B., Egloff, M. P., Ferron, F., Gorbalenya,
A. E., and Canard, B. (2006) A second, non-canon-
ical RNA-dependent RNA polymerase in SARS coro-
navirus, EMBO J., 25, 4933-4942, https://doi.org/
10.1038/sj.emboj.7601368.
17. Seybert, A., Hegyi, A., Siddell, S. G., and Ziebuhr, J.
(2000) The human coronavirus 229E superfami-
ly 1 helicase has RNA and DNA duplex-unwinding
activities with 5′-to-3′ polarity, RNA, 6, 1056-1068,
https://doi.org/10.1017/s1355838200000728.
18. Ivanov, K.A., Thiel,V., Dobbe, J.C., van der Meer, Y.,
Snijder, E.J., and Ziebuhr,J. (2004) Multiple enzymat-
ic activities associated with severe acute respiratory
syndrome coronavirus helicase, J. Virol., 78, 5619-
5632, https://doi.org/10.1128/JVI.78.11.5619-5632.2004.
19. Minskaia, E., Hertzig, T., Gorbalenya, A. E.,
Campanacci, V., Cambillau, C., Canard, B., and
Ziebuhr,J. (2006) Discovery of an RNA virus 3′→5′ exo-
ribonuclease that is critically involved in coronavirus
RNA synthesis, Proc. Natl. Acad. Sci. USA, 103, 5108-
5113, https://doi.org/10.1073/pnas.0508200103.
20. Ivanov, K. A., Hertzig, T., Rozanov, M., Bayer, S.,
Thiel,V., Gorbalenya, A.E., and Ziebuhr,J. (2004) Ma-
jor genetic marker of nidoviruses encodes a replica-
tive endoribonuclease, Proc. Natl. Acad. Sci. USA, 101,
12694-12699, https://doi.org/10.1073/pnas.0403127101.
21. Benoni, R., Krafcikova, P., Baranowski, M. R.,
Kowalska, J., Boura, E., and Cahová, H. (2021) Sub-
strate specificity of SARS-CoV-2 Nsp10-Nsp16 methyl-
transferase, Viruses, 13, 1722, https://doi.org/10.3390/
v13091722.
22. Bhatt, P.R., Scaiola,A., Loughran,G., Leibundgut,M.,
Kratzel, A., Meurs, R., Dreos, R., O’Connor, K. M.,
McMillan,A., Bode, J.W., Thiel,V., Gatfield,D., Atkins,
J. F., and Ban, N. (2021) Structural basis of ribosom-
al frameshifting during translation of the SARS-
CoV-2 RNA genome, Science, 372, 1306-1313, https://
doi.org/10.1126/science.abf3546.
23. Brierley, I., Digard, P., and Inglis, S. C. (1989) Char-
acterization of an efficient coronavirus ribosomal
frameshifting signal: requirement for an RNA pseu-
doknot, Cell, 57, 537-547, https://doi.org/10.1016/
0092-8674(89)90124-4.
24. Finkel, Y., Mizrahi, O., Nachshon, A., Weingarten-
Gabbay, S., Morgenstern, D., Yahalom-Ronen, Y.,
Tamir,H., Achdout,H., Stein,D., Israeli,O., Beth-Din,A.,
Melamed, S., Weiss, S., Israely, T., Paran, N.,
Schwartz, M., and Stern-Ginossar, N. (2021) The cod-
ing capacity of SARS-CoV-2, Nature, 589, 125-130,
https://doi.org/10.1038/s41586-020-2739-1.
25. Wang, D., Jiang,A., Feng,J., Li,G., Guo,D., Sajid, M.,
Wu, K., Zhang, Q., Ponty, Y., Will, S., Liu, F., Yu, X.,
Li,S., Liu,Q., Yang, X.L., Guo,M., Li,X., Chen,M., Shi,
Z.L., Lan,K., Chen,Y., and Zhou,Y. (2021) TheSARS-
CoV-2 subgenome landscape and its novel regula-
tory features, Mol. Cell, 81, 2135-2147.e5, https://
doi.org/10.1016/j.molcel.2021.02.036.
26. Firth, A.E. (2020) Aputative new SARS-CoV protein, 3c,
encoded in an ORF overlapping ORF3a, J.Gen. Virol.,
101, 1085-1089, https://doi.org/10.1099/jgv.0.001469.
27. Schaecher, S. R., Mackenzie, J. M., and Pekosz, A.
(2007) The ORF7b protein of severe acute respira-
tory syndrome coronavirus (SARS-CoV) is expressed
in virus-infected cells and incorporated into SARS-
CoV particles, J. Virol., 81, 718-731, https://doi.org/
10.1128/JVI.01691-06.