
MULTIEPITOPE mRNA VACCINE PROTECTS AGAINST TUBERCULOSIS 771
BIOCHEMISTRY (Moscow) Vol. 90 No. 6 2025
of murine macrophage modulated by IFN-γ, Eur. Rev.
Med. Pharmacol. Sci., 24, 3296-3305.
75. Lin, M. Y., Geluk, A., Smith, S. G., Stewart, A. L.,
Friggen, A. H., Franken, K. L., Verduyn, M. J., van
Meijgaarden, K. E., Voskuil, M. I., Dockrell, H. M.,
Huygen, K., Ottenhoff, T. H., and Klein, M. R. (2007)
Lack of immune responses to Mycobacterium tuber-
culosis DosR regulon proteins following Mycobacteri-
um bovis BCG vaccination, Infect. Immun., 75, 3523-
3530, https://doi.org/10.1128/IAI.01999-06.
76. Sharpe, M. L., Gao, C., Kendall, S. L., Baker, E. N.,
and Lott, J.S. (2008) The structure and unusual pro-
tein chemistry of hypoxic response protein 1, a la-
tency antigen and highly expressed member of the
DosR regulon in Mycobacterium tuberculosis, J. Mol.
Biol., 383, 822-836, https://doi.org/10.1016/j.jmb.
2008.07.001.
77. Yao, L., Hu, Q., Chen, S., Zhou, T., Yu, X., Ma, H.,
Ghonaim,A., Wu,H., Sun,Q., Fan,S., and He,Q. (2021)
Recombinant pseudorabies virus with TK/gE Gene
deletion and Flt3L co-expression enhances the innate
and adaptive immune response via activating den-
dritic cells, Viruses, 13, 691, https://doi.org/10.3390/
v13040691.
78. Boopathy, A.V., Nekkalapudi,A., Sung,J., Schulha,S.,
Jin, D., Sharma, B., Ng, S., Lu, S., Wimmer, R.,
Suthram, S., Ahmadi-Erber, S., Lauterbach, H.,
Orlinger, K. K., Hung, M., Carr, B., Callebaut, C.,
Geleziunas,R., Kuhne,M., Schmidt,S., and Falkard,B.
(2024) Flt3 agonist enhances immunogenicity of are-
navirus vector-based simian immunodeficiency virus
vaccine in macaques, J. Virol., 7, e0029424, https://
doi.org/10.1128/jvi.00294-24.
79. Zhu,J., Ke,Y., Liu,Q., Yang,J., Liu,F., Xu,R., Zhou,H.,
Chen, A., Xiao, J., Meng, F., Yu, L., Li, R., Wei, J., and
Liu, B. (2022) Engineered Lactococcus lactis secret-
ing Flt3L and OX40 ligand for in situ vaccination-
based cancer immunotherapy, Nat. Commun., 13,
7466, https://doi.org/10.1038/s41467-022-35130-7.
80. Maraskovsky, E., Brasel, K., Teepe, M., Roux, E. R.,
Lyman, S.D., Shortman,K., and McKenna, H.J. (1996)
Dramatic increase in the numbers of functionally
mature dendritic cells in Flt3 ligand-treated mice:
multiple dendritic cell subpopulations identified,
J. Exp. Med., 184, 1953-1962, https://doi.org/10.1084/
jem.184.5.1953.
81. Brasel,K., De Smedt,T., Smith, J.L., and Maliszewski,
C. R. (2000) Generation of murine dendritic cells
from flt3-ligand-supplemented bone marrow cul-
tures, Blood, 96, 3029-3039, https://doi.org/10.1182/
blood.V96.9.3029.h8003029_3029_3039.
82. Pulendran,B., Banchereau,J., Burkeholder,S., Kraus,E.,
Guinet, E., Chalouni, C., Caron, D., Maliszewski, C.,
Davoust, J., Fay, J., and Palucka, K. (2000) Flt3-li-
gand and granulocyte colony-stimulating factor mo-
bilize distinct human dendritic cell subsets in vivo,
J. Immunol., 165, 566-572, https://doi.org/10.4049/
jimmunol.165.1.566.
83. Triccas, J. A., Shklovskaya, E., Spratt, J., Ryan, A. A.,
Palendira,U., Fazekas de StGroth,B., and Britton, W.J.
(2007) Effects of DNA- and Mycobacterium bovis BCG-
based delivery of the Flt3 ligand on protective immu-
nity to Mycobacterium tuberculosis, Infect. Immun.,
75, 5368-5375, https://doi.org/10.1128/IAI.00322-07.
84. Ahn, S.S., Jeon, B.Y., Kim, K.S., Kwack, J.Y., Lee, E.G.,
Park, K.S., Sung, Y.C., and Cho, S.N. (2012) Mtb32 is
a promising tuberculosis antigen for DNA vaccination
in pre- and post-exposure mouse models, Gene Ther.,
19, 570-575, https://doi.org/10.1038/gt.2011.140.
85. Xu,J., Xu,W., Chen,X., Zhao,D., and Wang,Y. (2008)
Recombinant DNA vaccine of the early secreted an-
tigen ESAT-6 by Mycobacterium tuberculosis and
Flt3 ligand enhanced the cell-mediated immunity in
mice, Vaccine, 26, 4519-4525, https://doi.org/10.1016/
j.vaccine.2008.06.044.
86. Branger, J., Leemans, J. C., Florquin, S., Weijer, S.,
Speelman, P., and Van Der Poll, T. (2004) Toll-like
receptor 4 plays a protective role in pulmonary tu-
berculosis in mice, Int. Immunol., 3, 509-516, https://
doi.org/10.1093/intimm/dxh052.
87. Xin, Q., Niu, H., Li, Z., Zhang, G., Hu, L., Wang, B.,
Li,J., Yu, H., Liu,W., Wang, Y., Da,Z., Li,R., Xian,Q.,
Wang,Y., Zhang,Y., Jing,T., Ma,X., and Zhu,B. (2013)
Subunit vaccine consisting of multi-stage antigens
has high protective efficacy against Mycobacterium
tuberculosis infection in mice, PLoS One, 8, e72745,
https://doi.org/10.1371/journal.pone.0072745.
88. Oksanen, K. E., Myllymäki, H., Ahava, M. J., Mäkin-
en, L., Parikka, M., and Rämet, M. (2016) DNA vac-
cination boosts Bacillus Calmette-Guérin protection
against mycobacterial infection in zebrafish, Dev.
Comp. Immunol., 54, 89-96, https://doi.org/10.1016/j.
dci.2015.09.001.
89. Vakili, B., Nezafat,N., Zare,B., Erfani, N., Akbari,M.,
Ghasemi, Y., Rahbar, M. R., and Hatam, G. R. (2020)
A new multi-epitope peptide vaccine induces im-
mune responses and protection against Leishmania
infantum in BALB/c mice, Med. Microbiol. Immunol.,
209, 69-79, https://doi.org/10.1007/s00430-019-00640-7.
90. Kozlova, A., Pateev, I., Shepelkova, G., Vasileva, O.,
Zakharova, N., Yeremeev, V., Ivanov, R., and
Reshetnikov,V. (2024) A cap-optimized mRNA encod-
ing multiepitope antigen ESAT6 induces robust cellu-
lar and humoral immune responses against Mycobac-
terium tuberculosis, Vaccines (Basel), 12, 1267, https://
doi.org/10.3390/vaccines12111267.
91. Shepelkova, G. S., Reshetnikov, V. V., Avdienko, V. G.,
Sheverev, D.V., Yeremeev, V.V., and Ivanov, R.A. (2023)
Impact of untranslated mRNA sequences on immuno-
genicity of mRNA vaccines against M. tuberculosis in
mice, Bull. RSMU, 6, 27-33, https://doi.org/10.24075/
brsmu.2023.054.