
SELECTION OF UTRs 743
BIOCHEMISTRY (Moscow) Vol. 90 No. 6 2025
mRNA enhances translation by diminishing PKR ac-
tivation, Nucleic Acids Res., 38, 5884-5892, https://
doi.org/10.1093/nar/gkq347.
5. Mulroney, T. E., Pöyry, T., Yam-Puc, J. C., Rust, M.,
Harvey, R. F., Kalmar, L., Horner, E., Booth, L., Fer-
reira, A.P., Stoneley, M., Sawarkar, R., Mentzer, A. J.,
Lilley, K.S., Smales, C.M., von der Haar,T., Turtle,L.,
Dunachie, S., Klenerman, P., Thaventhiran, J. E. D.,
and Willis, A. E. (2024) N 1-methylpseudouridyla-
tion of mRNA causes +1 ribosomal frameshifting,
Nature, 625, 189-194, https://doi.org/10.1038/s41586-
023-06800-3.
6. Keeler, A. M., and Flotte, T. R. (2019) Recombinant
adeno-associated virus gene therapy in Light of Lux-
turna (and Zolgensma and Glybera): where are we,
and how did we get here? Annu. Rev. Virol., 6, 601-
621, https://doi.org/10.1146/annurev-virology-092818-
015530.
7. Nieuwenhuis, B., Laperrousaz, E., Tribble, J. R., Ver-
haagen,J., Fawcett, J.W., Martin, K.R., Williams, P.A.,
and Osborne, A. (2023) Improving adeno-associated
viral (AAV) vector-mediated transgene expression in
retinal ganglion cells: comparison of five promot-
ers, Gene Ther., 30, 503-519, https://doi.org/10.1038/
s41434-022-00380-z.
8. Tabebordbar, M., Lagerborg, K. A., Stanton, A., King,
E. M., Ye, S., Tellez, L., Krunnfusz, A., Tavakoli, S.,
Widrick, J. J., Messemer, K. A., Troiano, E. C.,
Moghadaszadeh, B., Peacker, B. L., Leacock, K. A.,
Horwitz, N., Beggs, A. H., Wagers, A. J., and Sabeti,
P. C. (2021) Directed evolution of a family of AAV
capsid variants enabling potent muscle-directed
gene delivery across species, Cell, 184, 4919-4938.e22,
https://doi.org/10.1016/j.cell.2021.08.028.
9. Goertsen, D., Flytzanis, N. C., Goeden, N., Chuapoco,
M. R., Cummins, A., Chen, Y., Fan, Y., Zhang, Q.,
Sharma, J., Duan, Y., Wang, L., Feng, G., Chen, Y., Ip,
N. Y., Pickel, J., and Gradinaru, V. (2022) AAV capsid
variants with brain-wide transgene expression and
decreased liver targeting after intravenous delivery
in mouse and marmoset, Nat. Neurosci., 25, 106-115,
https://doi.org/10.1038/s41593-021-00969-4.
10. Luo,L., Jea, J.D.Y., Wang,Y., Chao, P.W., and Yen,L.
(2024) Control of mammalian gene expression by
modulation of polyA signal cleavage at 5′ UTR, Nat.
Biotechnol., 42, 1454-1466, https://doi.org/10.1038/
s41587-023-01989-0.
11. Zhong, G., Wang, H., He, W., Li, Y., Mou, H., Tickner,
Z.J., Tran, M.H., Ou,T., Yin,Y., Diao,H., and Farzan,
M. A. (2020) reversible RNA on-switch that controls
gene expression of AAV-delivered therapeutics in vivo,
Nat. Biotechnol., 38, 169-175, https://doi.org/10.1038/
s41587-019-0357-y.
12. Luoni, M., Giannelli, S., Indrigo, M. T., Niro, A.,
Massimino, L., Iannielli, A., Passeri, L., Russo, F.,
Morabito, G., Calamita, P., Gregori, S., Deverman, B.,
and Broccoli, V. (2020) Whole brain delivery of an
instability-prone Mecp2 transgene improves be-
havioral and molecular pathological defects in
mouse models of Rett syndrome, Elife, 9, e52629,
https://doi.org/10.7554/eLife.52629.
13. Chu, Y., Yu, D., Li, Y., Huang, K., Shen, Y., Cong, L.,
Zhang, J., and Wang, M. (2024) A 5’ UTR language
model for decoding untranslated regions of mRNA
and function predictions, Nat. Mach. Intell., 6,
449-460, https://doi.org/10.1038/S42256-024-00823-9.
14. Castillo-Hair, S.M., and Seelig,G. (2022) Machine learn-
ing for designing next-generation mRNA therapeutics,
Acc. Chem. Res., 55, 24-34, https://doi.org/10.1021/
acs.accounts.1c00621.
15. Cao, J., Novoa, E. M., Zhang, Z., Chen, W. C. W.,
Liu, D., Choi, G. C. G., Wong, A. S.L., Wehrspaun, C.,
Kellis,M., and Lu, T.K. (2021) High-throughput 5′ UTR
engineering for enhanced protein production in non-
viral gene therapies, Nat. Commun., 12, 4138, https://
doi.org/10.1038/s41467-021-24436-7.
16. Castillo-Hair, S., Fedak, S., Wang, B., Linder, J.,
Havens, K., Certo, M., and Seelig, G. (2024) Opti-
mizing 5’UTRs for mRNA-delivered gene editing us-
ing deep learning, Nat. Commun., 15, 5284, https://
doi.org/10.1038/S41467-024-49508-2.
17. Hajj, K. A., and Whitehead, K. A. (2017) Tools for
translation: non-viral materials for therapeutic
mRNA delivery, Nat. Rev. Mater., 2, 17056, https://
doi.org/10.1038/natrevmats.2017.56.
18. Kon, E., Elia, U., and Peer, D. (2022) Principles for
designing an optimal mRNA lipid nanoparticle vac-
cine, Curr. Opin. Biotechnol., 73, 329-336, https://
doi.org/10.1016/j.copbio.2021.09.016.
19. Park, K.S., Sun,X., Aikins, M.E., and Moon, J.J. (2021)
Non-viral COVID-19 vaccine delivery systems, Adv.
Drug Deliv. Rev., 169, 137-151, https://doi.org/10.1016/
j.addr.2020.12.008.
20. Lu, R. M., Hsu, H. E., Perez, S. J. L. P., Kumari, M.,
Chen, G.H., Hong, M.H., Lin, Y.S., Liu, C.H., Ko, S.H.,
Concio, C. A. P., Su, Y. J., Chang, Y. H., Li, W. S., and
Wu, H.C. (2024) Current landscape of mRNA technol-
ogies and delivery systems for new modality thera-
peutics, J.Biomed. Sci., 31, 89, https://doi.org/10.1186/
s12929-024-01080-z.
21. Wadhwa, A., Aljabbari, A., Lokras, A., Foged, C., and
Thakur,A. (2020) Opportunities and challenges in the
delivery of mRNA-based vaccines, Pharmaceutics, 12,
102, https://doi.org/10.3390/pharmaceutics12020102.
22. Jones, C. H., Androsavich, J.R., So, N., Jenkins, M. P.,
MacCormack,D., Prigodich, A., Welch,V., True, J. M.,
and Dolsten,M. (2024) Breaking the mold with RNA–
a “RNAissance” of life science, NPJ Genomic Med.,
9, 2, https://doi.org/10.1038/s41525-023-00387-4.
23. Baek, R., Coughlan, K., Jiang, L., Liang, M., Ci, L.,
Singh,H., Zhang,H., Kaushal,N., Rajlic, I.L., Van,L.,
Dimen,R., Cavedon,A., Yin,L., Rice, L., Frassetto,A.,