
SINYAGOVSKAYA et al.668
BIOCHEMISTRY (Moscow) Vol. 90 No. 6 2025
peroxidation and ferroptosis, Redox Biol., 23, 101107,
https://doi.org/10.1016/j.redox.2019.101107.
85. Koppula, P., Zhuang, L., and Gan, B. (2021) Cystine
transporter SLC7A11/xCT in cancer: ferroptosis, nutri-
ent dependency, and cancer therapy, Protein Cell, 12,
599-620, https://doi.org/10.1007/s13238-020-00789-5.
86. Ingold,I., Berndt,C., Schmitt,S., Doll,S., Poschmann,G.,
Buday, K., Roveri, A., Peng, X., Porto Freitas, F.,
Seibt, T., Mehr, L., Aichler, M., Walch, A., Lamp, D.,
Jastroch,M., Miyamoto,S., Wurst,W., Ursini,F., Arnér,
E. S. J., Fradejas-Villar, N., Schweizer, U., Zischka, H.,
Friedmann Angeli, J. P., and Conrad, M. (2018) Sele-
nium utilization by GPX4 is required to prevent hy-
droperoxide-induced ferroptosis, Cell, 172, 409-422.
e21, https://doi.org/10.1016/j.cell.2017.11.048.
87. de Souza, I., Monteiro, L. K. S., Guedes, C. B., Silva,
M. M., Andrade-Tomaz, M., Contieri, B., Latancia,
M. T., Mendes, D., Porchia, B. F. M. M., Lazarini, M.,
Gomes, L. R., and Rocha, C. R. R. (2022) High levels
of NRF2 sensitize temozolomide-resistant glioblasto-
ma cells to ferroptosis via ABCC1/MRP1 upregulation,
Cell Death Dis., 13, 591, https://doi.org/10.1038/s41419-
022-05044-9.
88. Wang, D., Tang,L., Zhang, Y., Ge, G., Jiang,X., Mo, Y.,
Wu, P., Deng, X., Li, L., Zuo, S., Yan, Q., Zhang, S.,
Wang, F., Shi, L., Li, X., Xiang, B., Zhou, M., Liao, Q.,
Guo, C., Zeng, Z., Xiong, W., and Gong, Z. (2022) Reg-
ulatory pathways and drugs associated with fer-
roptosis in tumors, Cell Death Dis., 13, 544, https://
doi.org/10.1038/s41419-022-04927-1.
89. Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R.,
and Tang,D. (2016) Activation of the p62-Keap1-NRF2
pathway protects against ferroptosis in hepatocellu-
lar carcinoma cells, Hepatology, 63, 173-184, https://
doi.org/10.1002/hep.28251.
90. Li,T., Jiang,D., and Wu,K. (2020) p62 promotes blad-
der cancer cell growth by activating KEAP1/NRF2-de-
pendent antioxidative response, Cancer Sci., 111,
1156-1164, https://doi.org/10.1111/cas.14321.
91. Ma, J., Hu, J., Zhao, L., Wu, Z., Li, R., and Deng, W.
(2024) Identification of clinical prognostic factors
and analysis of ferroptosis-related gene signatures in
the bladder cancer immune microenvironment, BMC
Urol., 24, 6, https://doi.org/10.1186/s12894-023-01354-y.
92. Wang,K., Wang,G., Li,G., Zhang,W., Wang,Y., Lin,X.,
Han,C., Chen,H., Shi,L., Reheman,A., Li,J., Li,Z., and
Yang,X. (2023) m6A writer WTAP targets NRF2 to ac-
celerate bladder cancer malignancy via m6A-depen-
dent ferroptosis regulation, Apoptosis, 28, 627-638,
https://doi.org/10.1007/s10495-023-01817-5.
93. Chen, L., and Wang, X. (2018) Relationship between
the genetic expression of WTAP and bladder cancer
and patient prognosis, Oncol. Lett., 16, 6966-6970,
https://doi.org/10.3892/ol.2018.9554.
94. Gao, N., Li, Y., Li, J., Gao, Z., Yang, Z., Li, Y., Liu, H.,
and Fan,T. (2020) Long non-coding RNAs: the regula-
tory mechanisms, research strategies, and future di-
rections in cancers, Front. Oncol., 10, 598817, https://
doi.org/10.3389/fonc.2020.598817.
95. Qin, T., Li, J., and Zhang, K.-Q. (2020) Structure, reg-
ulation, and function of linear and circular long
non-coding RNAs, Front. Genet., 11, 150, https://
doi.org/10.3389/fgene.2020.00150.
96. Luo, H., Xu, C., Le, W., Ge, B., and Wang, T. (2019)
lncRNA CASC11 promotes cancer cell proliferation in
bladder cancer through miRNA-150, J. Cell. Biochem.,
120, 13487-13493, https://doi.org/10.1002/jcb.28622.
97. Zhang, Z., Zhou, C., Chang, Y., Zhang, Z., Hu, Y.,
Zhang,F., Lu,Y., Zheng,L., Zhang,W., Li,X., and Li,X.
(2016) Long non-coding RNA CASC11 interacts with
hnRNP-K and activates the WNT/β-catenin pathway
to promote growth and metastasis in colorectal can-
cer, Cancer Lett., 376, 62-73, https://doi.org/10.1016/
j.canlet.2016.03.022.
98. Huang,Y., Lv,Y., Yang,B., Zhang,S., Liu,B., Zhang,C.,
Hu, W., Jiang, L., Chen, C., Ji, D., Xiong, C., Liang, Y.,
Liu, M., Ying, X., and Ji, W. (2024) Enhancing m(6)A
modification of lncRNA through METTL3 and RBM15
to promote malignant progression in bladder can-
cer, Heliyon, 10, e28165, https://doi.org/10.1016/
j.heliyon.2024.e28165.
99. Han,J., Wang, J.Z., Yang,X., Yu,H., Zhou,R., Lu, H.C.,
Yuan, W.B., Lu, J.C., Zhou, Z.J., Lu,Q., Wei, J.F., and
Yang,H. (2019) METTL3 promote tumor proliferation
of bladder cancer by accelerating pri-miR221/222
maturation in m6A-dependent manner, Mol. Cancer,
18, 110, https://doi.org/10.1186/s12943-019-1036-9.
100. Xie,J., Zhang,H., Wang,K., Ni,J., Ma,X., Khoury, C.J.,
Prifti,V., Hoard,B., Cerenzia, E.G., Yin,L., Zhang,H.,
Wang, R., Zhuo, D., Mao, W., and Peng, B. (2023)
M6A-mediated-upregulation of lncRNA BLACAT3 pro-
motes bladder cancer angiogenesis and hematoge-
nous metastasis through YBX3 nuclear shuttling and
enhancing NCF2 transcription, Oncogene, 42, 2956-
2970, https://doi.org/10.1038/s41388-023-02814-3.
101. Liu,J., Tian,C., Qiao,J., Deng,K., Ye,X., and Xiong,L.
(2024) m6A Methylation-Mediated Stabilization of
LINC01106 Suppresses Bladder Cancer Progression by
Regulating the miR-3148/DAB1 Axis, Biomedicines, 12,
114, https://doi.org/10.3390/biomedicines12010114.
102. Yi,J., Ma,X., Ying,Y., Liu, Z., Tang,Y., Shu,X., Sun,J.,
Wu, Y., Lu, D., Wang, X., Luo, J., Liu, B., Zheng, X.,
Lin, Y., Li, J., and Xie, L. (2024) N6-methyladenosine-
modified CircPSMA7 enhances bladder cancer ma-
lignancy through the miR-128-3p/MAPK1 axis, Can-
cer Lett., 585, 216613, https://doi.org/10.1016/j.canlet.
2024.216613.
103. Liu,P., Fan,B., Othmane,B., Hu,J., Li,H., Cui,Y., Ou,Z.,
Chen,J., and Zu, X. (2022) M6A-induced lncDBET pro-
motes the malignant progression of bladder cancer
through FABP5-mediated lipid metabolism, Theranos-
tics, 12, 6291-6307, https://doi.org/10.7150/thno.71456.