STRUCTURE OF THE SARS-CoV-2 RBD:P2C5 NANOBODY COMPLEX 1271
BIOCHEMISTRY (Moscow) Vol. 89 No. 7 2024
M.P., and Villafana,T. (2022) Nirsevimab for preven-
tion of RSV in healthy late-preterm and term infants,
New Eng. J.Med., 386, 837-846, https://doi.org/10.1056/
NEJMoa2110275.
3. Mulangu,S., Dodd Lori,E., Davey Richard,T., Tshiani
Mbaya, O., Proschan, M., Mukadi, D., Lusakibanza,
M.M., Nzolo, D., Tshomba, O.A., Ibanda,A., Ali, R.,
Coulibaly,S., Levine Adam,C., Grais,R., Diaz,J., Lane,
H.C., and Muyembe-Tamfum, J.-J. (2019) A random-
ized, controlled trial of Ebola virus disease thera-
peutics, New Eng. J. Med., 381, 2293-2303, https://
doi.org/10.1056/NEJMoa1910993.
4. Wang,Q., and Zhang,L. (2020) Broadly neutralizing
antibodies and vaccine design against HIV-1 infection,
Front. Med., 14, 30-42, https://doi.org/10.1007/s11684-
019-0721-9.
5. Jarmo,O., Veli-Jukka,A., and Eero, M. (2020) Treat-
ment of Clostridioides (Clostridium) difficile infection,
Ann. Med., 52, 12-20, https://doi.org/10.1080/07853890.
2019.1701703.
6. Liu,C., Das,R., Dijokaite-Guraliuc,A., Zhou,D., Men-
tzer, A.J., Supasa,P., Selvaraj,M., Duyvesteyn, H.M.E.,
Ritter, T.G., Temperton,N., Klenerman,P., Dunachie,
S.J., Paterson, N.G., Williams, M.A., Hall, D.R., Fry,
E.E., Mongkolsapaya,J., Ren,J., Stuart, D.I., and Scre-
aton, G. R. (2024) Emerging variants develop total
escape from potent monoclonal antibodies induced
by BA.4/5 infection, Nat. Commun., 15, 3284, https://
doi.org/10.1038/s41467-024-47393-3.
7. Laroche,A., Orsini Delgado, M.L., Chalopin,B., Cuni-
asse,P., Dubois,S., Sierocki,R., Gallais,F., Debroas,S.,
Bellanger,L., Simon,S., Maillère,B., and Nozach,H.
(2022) Deep mutational engineering of broadly-neu-
tralizing nanobodies accommodating SARS-CoV-1 and
2 antigenic drift, mAbs, 14, 2076775, https://doi.org/
10.1080/19420862.2022.2076775.
8. Hannula,L., Kuivanen,S., Lasham,J., Kant,R., Karein-
en,L., Bogacheva,M., Strandin,T., Sironen,T., Hepojo-
ki,J., Sharma,V., Saviranta,P., Kipar,A., Vapalahti,O.,
Huiskonen, J. T., and Rissanen, I. (2024) Nanobody
engineering for SARS-CoV-2 neutralization and detec-
tion, Microbiol. Spectrum, 12, e04199-04122, https://
doi.org/10.1128/spectrum.04199-22.
9. Hanke, L., Vidakovics Perez, L., Sheward, D. J.,
Das,H., Schulte,T., Moliner-Morro,A., Corcoran,M.,
Achour,A., Karlsson Hedestam, G.B., Hällberg, B.M.,
Murrell, B., and McInerney, G. M. (2020) An alpaca
nanobody neutralizes SARS-CoV-2 by blocking re-
ceptor interaction, Nat. Commun., 11, 4420, https://
doi.org/10.1038/s41467-020-18174-5.
10. Hoffmann, M., Kleine-Weber, H., Schroeder, S.,
Krüger,N., Herrler,T., Erichsen,S., Schiergens, T.S.,
Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A.,
Drosten, C., and Pöhlmann, S. (2020) SARS-CoV-2
cell entry depends on ACE2 and TMPRSS2 and is
blocked by a clinically proven protease inhibitor,
Cell, 181, 271-280.e278, https://doi.org/10.1016/j.cell.
2020.02.052.
11. Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S.,
Zhang,Q., Shi,X., Wang,Q., Zhang,L., and Wang,X.
(2020) Structure of the SARS-CoV-2 spike recep-
tor-binding domain bound to the ACE2 receptor,
Nature, 581, 215-220, https://doi.org/10.1038/s41586-
020-2180-5.
12. Piccoli,L., Park, Y.-J., Tortorici, M.A., Czudnochows-
ki,N., Walls, A.C., Beltramello,M., Silacci-Fregni,C.,
Pinto, D., Rosen, L. E., Bowen, J. E., Acton, O. J.,
Jaconi,S., Guarino,B., Minola,A., Zatta,F., Sprugas-
ci,N., Bassi,J., Peter,A., De Marco,A., Nix, J.C., etal.
(2020) Mapping neutralizing and immunodominant
sites on the SARS-CoV-2 spike receptor-binding do-
main by structure-guided high-resolution serology,
Cell, 183, 1024-1042.e1021, https://doi.org/10.1016/
j.cell.2020.09.037.
13. Xiang, Y., Nambulli, S., Xiao, Z., Liu, H., Sang, Z.,
Duprex, W. P., Schneidman-Duhovny, D., Zhang, C.,
and Shi, Y. (2020) Versatile and multivalent nano-
bodies efficiently neutralize SARS-CoV-2, Science,
370, 1479-1484, https://doi.org/10.1126/science.
abe4747.
14. Esmagambetov, I. B., Ryabova, E.I., Derkaev, A.A.,
Shcheblyakov, D. V., Dolzhikova, I. V., Favorskaya,
I.A., Grousova, D.M., Dovgiy, M.A., Prokofiev, V.V.,
Gosudarev, A.I., Byrikhina, D.V., Zorkov, I.D., Iliukhi-
na, A.A., Kovyrshina, A.V., Shelkov, A.Y., Naroditsky,
B.S., Logunov, D.Y., and Gintsburg, A.L. (2023) rAAV
expressing recombinant antibody for emergency
prevention and long-term prophylaxis of COVID-19,
Front. Immunol., 14, 1129245, https://doi.org/10.3389/
fimmu.2023.1129245.
15. Favorskaya, I.A., Shcheblyakov, D. V., Esmagambe-
tov, I. B., Dolzhikova, I. V., Alekseeva, I. A., Korob-
kova, A.I., Voronina, D.V., Ryabova, E. I., Derkaev,
A. A., Kovyrshina, A. V., Iliukhina, A. A., Botikov,
A.G., Voronina, O.L., Egorova, D.A., Zubkova, O.V.,
Ryzhova, N.N., Aksenova, E.I., Kunda, M.S., Logun-
ov, D.Y., Naroditsky, B.S., etal. (2022) Single-domain
antibodies efficiently neutralize SARS-CoV-2 vari-
ants of concern, Front. Immunol., 13, 822159, https://
doi.org/10.3389/fimmu.2022.822159.
16. Deshpande, A., Harris, B. D., Martinez-Sobrido, L.,
Kobie, J.J., and Walter, M.R. (2021) Epitope classifi-
cation and RBD binding properties of neutralizing
antibodies against SARS-CoV-2 variants of concern,
Front. Immunol., 12, 691715, https://doi.org/10.3389/
fimmu.2021.691715.
17. Jian,F., Feng,L., Yang,S., Yu,Y., Wang,L., Song,W.,
Yisimayi,A., Chen,X., Xu,Y., Wang,P., Yu,L., Wang,J.,
Liu, L., Niu, X., Wang, J., Xiao, T., An, R., Wang, Y.,
Gu,Q., Shao,F., etal. (2023) Convergent evolution of
SARS-CoV-2 XBB lineages on receptor-binding domain
455-456 synergistically enhances antibody evasion