MECHANISM OF PARP1 ELONGATION REACTION 1209
BIOCHEMISTRY (Moscow) Vol. 89 No. 7 2024
BioDrugs, 29, 143-150, https://doi.org/10.1007/s40259-
015-0125-6.
15. Mittica,G., Ghisoni,E., Giannone,G., Genta,S., Agliet-
ta,M., Sapino,A., and Valabrega,G. (2018) PARP in-
hibitors in ovarian cancer, Recent Pat. Anticancer
Drug Discov., 13, 392-410, https://doi.org/10.2174/
1574892813666180305165256.
16. Zimmer, A. S., Gillard, M., Lipkowitz, S., and Lee,
J. M. (2018) Update on PARP inhibitors in breast
cancer, Curr. Treat. Options Oncol., 19, 21, https://
doi.org/10.1007/s11864-018-0540-2.
17. Kirsanov,K., Fetisov,T., Antoshina,E., Trukhanova,L.,
Gor’kova,T., etal. (2022) Toxicological properties of
7-methylguanine, and preliminary data on its anti-
cancer activity, Front. Pharmacol., 13, 842316, https://
doi.org/10.3389/fphar.2022.842316.
18. Ruf,A., Rolli,V., de Murcia,G., and Schulz, G.E. (1998)
The mechanism of the elongation and branching reac-
tion of poly(ADP-ribose) polymerase as derived from
crystal structures and mutagenesis, J.Mol. Biol., 278,
57-65, https://doi.org/10.1006/jmbi.1998.1673.
19. Gibson, B.A., and Kraus, W.L. (2012) New insights into
the molecular and cellular functions of poly(ADP-ri-
bose) and PARPs, Nat. Rev. Mol. Cell Biol., 13, 411-424,
https://doi.org/10.1038/nrm3376.
20. Drenichev, M. S., and Mikhailov, S. N. (2015)
Poly(ADP-ribose) - a unique natural polymer struc-
tural features, biological role and approaches to the
chemical synthesis, Nucleosides Nucleotides Nucleic
Acids, 34, 258-276, https://doi.org/10.1080/15257770.
2014.984073.
21. Alemasova, E.E., and Lavrik, O.I. (2019) Poly(ADP-ri-
bosyl)ation by PARP1: reaction mechanism and reg-
ulatory proteins, Nucleic Acids Res., 47, 3811-3827,
https://doi.org/10.1093/nar/gkz120.
22. Hoch, N.C., and Polo, L.M. (2019) ADP-ribosylation:
from molecular mechanisms to human disease, Gen-
et. Mol. Biol., 43, e20190075, https://doi.org/10.1590/
1678-4685-gmb-2019-0075.
23. Brem,R., and Hall, J. (2005) XRCC1 is required for
DNA single-strand break repair in human cells, Nu-
cleic Acids Res., 33, 2512-2520, https://doi.org/10.1093/
nar/gki543.
24. Ray Chaudhuri,A., and Nussenzweig,A. (2017) The
multifaceted roles of PARP1 in DNA repair and chro-
matin remodeling, Nat. Rev. Mol. Cell Biol., 18, 610-
621, https://doi.org/10.1038/nrm.2017.53.
25. Ruf, A., de Murcia, G., and Schulz, G. E. (1998) In-
hibitor and NAD
+
binding to poly(ADP-ribose) poly-
merase as derived from crystal structures and ho-
mology modeling, Biochemistry, 37, 3893-3900, https://
doi.org/10.1021/bi972383s.
26. Langelier, M.F., Zandarashvili,L., Aguiar, P.M., Black,
B. E., and Pascal, J. M. (2018) NAD
+
analog reveals
PARP-1 substrate-blocking mechanism and allosteric
communication from catalytic center to DNA-binding
domains, Nat. Commun., 9, 844, https://doi.org/10.1038/
s41467-018-03234-8.
27. Marsischky, G.T., Wilson, B.A., and Collier, R.J. (1995)
Role of glutamic acid 988 of human poly-ADP-ribose
polymerase in polymer formation. Evidence for ac-
tive site similarities to the ADP-ribosylating toxins,
J.Biol. Chem., 270, 3247-3254, https://doi.org/10.1074/
jbc.270.7.3247.
28. Barkauskaite,E., Jankevicius,G., and Ahel, I. (2015)
Structures and mechanisms of enzymes employed
in the synthesis and degradation of PARP-depen-
dent protein ADP-ribosylation, Mol. Cell, 58, 935-946,
https://doi.org/10.1016/j.molcel.2015.05.007.
29. Nilov, D.K., Pushkarev, S.V., Gushchina, I.V., Mana-
saryan, G.A., Kirsanov, K.I., and Švedas, V.K. (2020)
Modeling of the enzyme-substrate complexes of
human poly(ADP-ribose) polymerase 1, Biochem-
istry (Moscow), 85, 99-107, https://doi.org/10.1134/
S0006297920010095.
30. Langelier, M.F., Planck, J.L., Roy,S., and Pascal, J.M.
(2012) Structural basis for DNA damage-dependent
poly(ADP-ribosyl)ation by human PARP-1, Science,
336, 728-732, https://doi.org/10.1126/science.1216338.
31. Case, D. A., Belfon, K., Ben-Shalom, I.Y., Brozell, S.R.,
Cerutti, D.S., et al. (2020) AMBER 2020, University of
California, San Francisco.
32. Salomon-Ferrer,R., Case, D.A., and Walker, R.C. (2013)
An overview of the Amber biomolecular simulation
package, WIREs Comput. Mol. Sci., 3, 198-210, https://
doi.org/10.1002/wcms.1121.
33. Salomon-Ferrer,R., Götz, A.W., Poole,D., Le Grand,S.,
and Walker, R.C. (2013) Routine microsecond molec-
ular dynamics simulations with AMBER on GPUs. 2.
Explicit Solvent Particle Mesh Ewald, J. Chem. The-
ory Comput., 9, 3878-3888, https://doi.org/10.1021/
ct400314y.
34. Voevodin, V. V., Antonov, A. S., Nikitenko, D. A.,
Shvets, P.A., Sobolev, S.I., et al. (2019) Supercomputer
Lomonosov-2: large scale, deep monitoring and fine
analytics for the user community, Supercomput. Front.
Innov., 6, 4-11, https://doi.org/10.14529/jsfi190201.
35. Maier, J. A., Martinez, C., Kasavajhala, K., Wick-
strom, L., Hause, K. E., and Simmerling, C. (2015)
ff14SB: improving the accuracy of protein side chain
and backbone parameters from ff99SB, J.Chem. The-
ory Comput., 11, 3696-3713, https://doi.org/10.1021/
acs.jctc.5b00255.
36. Walker, R.C., de Souza, M.M., Mercer, I.P., Gould, I.R.,
and Klug, D.R. (2002) Large and fast relaxations in-
side a protein: calculation and measurement of reor-
ganization energies in alcohol dehydrogenase, J.Phys.
Chem. B, 106, 11658-11665, https://doi.org/10.1021/
jp0261814.
37. Pavelites, J. J., Gao, J., Bash, P. A., and MacKerell,
A. D., Jr. (1997) A molecular mechanics force field
for NAD
+
, NADH, and the pyrophosphate groups