ASSESSMENT OF NER ACTIVITY BY qPCR 1191
BIOCHEMISTRY (Moscow) Vol. 89 No. 7 2024
repair by oligonucleotide retrieval, Sci. Rep., 4, 4894,
https://doi.org/10.1038/srep04894.
14. Evdokimov,A., Kutuzov,M., Petruseva,I., Lukjanchi-
kova, N., Kashina, E., Kolova, E., Zemerova, T., Ro-
manenko, S., Perelman, P., Prokopov, D., Seluan-
ov, A., Gorbunova,V., Graphodatsky,A., Trifonov,V.,
Khodyreva, S., and Lavrik, O. (2018) Naked mole
rat cells display more efficient excision repair than
mouse cells, Aging (Albany NY), 10, 1454-1473, https://
doi.org/10.18632/aging.101482.
15. Reardon, J. T., and Sancar, A. (2006) Purification
and characterization of Escherichia coli and human
nucleotide excision repair enzyme systems, Meth-
ods Enzymol., 408, 189-213, https://doi.org/10.1016/
S0076-6879(06)08012-8.
16. Clavé,G., Reverte,M., Vasseur, J.J., and Smietana,M.
(2020) Modified internucleoside linkages for nu-
clease-resistant oligonucleotides, RSC Chem. Biol.,
2, 94-150, https://doi.org/10.1039/d0cb00136h.
17. Smith, C.A., Baeten,J., and Taylor, J.S. (1998) Theabil-
ity of a variety of polymerases to synthesize past
site-specific cis-syn, trans-syn-II, (6-4), and Dewar
photoproducts of thymidylyl-(3′→5′)-thymidine, J.Biol.
Chem., 273, 21933-21940, https://doi.org/10.1074/
jbc.273.34.21933.
18. Taylor, J.S. (2002) New structural and mechanistic in-
sight into the A-rule and the instructional and non-in-
structional behavior of DNA photoproducts and other
lesions, Mutat. Res., 510, 55-70, https://doi.org/10.1016/
s0027-5107(02)00252-x.
19. Khare,V., and Eckert, K.A. (2002) The proofreading
3′→5′ exonuclease activity of DNA polymerases: a ki-
netic barrier to translesion DNA synthesis, Mutat.
Res., 510, 45-54, https://doi.org/10.1016/s0027-5107
(02)00251-8.
20. Obeid, S., Schnur, A., Gloeckner, C., Blatter, N., Wel-
te, W., Diederichs, K., and Marx,A. (2011) Learning
from directed evolution: Thermus aquaticus DNA poly-
merase mutants with translesion synthesis activity,
Chembiochem., 12, 1574-1580, https://doi.org/10.1002/
cbic.201000783.
21. Evdokimov,A., Popov,A., Ryabchikova,E., Koval,O.,
Romanenko, S., Trifonov, V., Petruseva, I., Lavr-
ik, I., and Lavrik, O. (2021) Uncovering molecular
mechanisms of regulated cell death in the naked
mole rat, Aging (Albany NY), 13, 3239-3253, https://
doi.org/10.18632/aging.202577.
22. Yamamura, Y., Kawamura, Y., Oka, K., and Miu-
ra, K. (2022) Carcinogenesis resistance in the lon-
gest-lived rodent, the naked mole-rat, Cancer Sci., 113,
4030-4036, https://doi.org/10.1111/cas.15570.
23. Boughey, H., Jurga, M., and El-Khamisy, S. F. (2021)
DNA homeostasis and senescence: lessons from the
naked mole rat, Int. J. Mol. Sci., 22, 6011, https://
doi.org/10.3390/ijms22116011.
24. Hadj-Moussa,H., Eaton,L., Cheng,H., Pamenter, M.E.,
and Storey, K. B. (2022) Naked mole-rats resist the
accumulation of hypoxia-induced oxidative damage,
Comp. Biochem. Physiol. A Mol. Integr. Physiol., 273,
111282, https://doi.org/10.1016/j.cbpa.2022.111282.
25. Buffenstein, R. (2005) The naked mole-rat: a new
long-living model for human aging research, J.Geron-
tol. A Biol. Sci. Med. Sci., 60, 1369-1377, https://
doi.org/10.1093/gerona/60.11.1369.
26. Gorbunova,V., Seluanov,A., Zhang,Z., Gladyshev, V.N.,
and Vijg,J. (2014) Comparative genetics of longevity
and cancer: insights from long-lived rodents, Nat. Rev.
Genet., 15, 531-540, https://doi.org/10.1038/nrg3728.
27. MacRae, S.L., Croken, M.M., Calder, R.B., Aliper,A.,
Milholland,B., White, R. R., Zhavoronkov,A., Glady-
shev, V.N., Seluanov,A., Gorbunova,V., Zhang, Z.D.,
and Vijg,J. (2015) DNA repair in species with extreme
lifespan differences, Aging (Albany NY), 7, 1171-1184,
https://doi.org/10.18632/aging.100866.
28. Gautam,A., Fawcett,H., Burdova,K., Brazina,J., and
Caldecott, K. W. (2023) APE1-dependent base exci-
sion repair of DNA photodimers in human cells,
Mol. Cell, 83, 3669-3678.e7, https://doi.org/10.1016/
j.molcel.2023.09.013.
29. Saha, L. K., Wakasugi, M., Akter, S., Prasad, R., Wil-
son, S. H., Shimizu, N., Sasanuma, H., Huang, S. N.,
Agama, K., Pommier, Y., Matsunaga, T., Hirota, K.,
Iwai,S., Nakazawa,Y., Ogi, T., and Takeda, S. (2020)
Topoisomerase I-driven repair of UV-induced damage
in NER-deficient cells, Proc. Natl. Acad. Sci. USA, 117,
14412-14420, https://doi.org/10.1073/pnas.1920165117.
Publisher’s Note. Pleiades Publishing remains
neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.