METHODS FOR FUNCTIONAL CHARACTERIZATION OF POLYMORPHISMS 1011
BIOCHEMISTRY (Moscow) Vol. 89 No. 6 2024
46. Ernst,J., Melnikov,A., Zhang,X., Wang,L., Rogov,P.,
Mikkelsen, T. S., and Kellis, M. (2016) Genome-scale
high-resolution mapping of activating and repressive
nucleotides in regulatory regions, Nat. Biotechnol.,
34, 1180-1190, doi:10.1038/nbt.3678.
47. Soemedi, R., Cygan, K. J., Rhine, C. L., Wang, J., Bu-
lacan,C., Yang, J., Bayrak-Toydemir, P., McDonald, J.,
and Fairbrother, W.G. (2017) Pathogenic variants that
alter protein code often disrupt splicing, Nat. Genet.,
49, 848-855, doi:10.1038/ng.3837.
48. Rhine, C.L., Neil,C., Wang,J., Maguire,S., Buerer,L.,
Salomon, M., Meremikwu, I. C., Kim, J., Strande,
N. T., and Fairbrother, W. G. (2022) Massively paral-
lel reporter assays discover de novo exonic splicing
mutants in paralogs of Autism genes, PLoS Genet.,
18, e1009884, doi:10.1371/journal.pgen.1009884.
49. Lagunas,T., Plassmeyer, S.P., Fischer, A.D., Friedman,
R. Z., Rieger, M. A., Selmanovic, D., Sarafinovska, S.,
Sol, Y.K., Kasper, M.J., Fass, S.B., Aguilar Lucero, A.F.,
An, J. Y., Sanders, S. J., Cohen, B. A., and Dougherty,
J.D. (2023) ACre-dependent massively parallel report-
er assay allows for cell-type specific assessment of the
functional effects of non-coding elements invivo, Com-
mun. Biol., 6, 1151, doi:10.1038/s42003-023-05483-w.
50. Gordon, M. G., Inoue, F., Martin, B., Schubach, M.,
Agarwal,V., Whalen,S., Feng,S., Zhao,J., Ashuach,T.,
Ziffra,R., Kreimer,A., Georgakopoulous-Soares,I., Yo-
sef,N., Ye, C.J., Pollard, K.S., Shendure,J., Kircher,M.,
and Ahituv, N. (2020) lentiMPRA and MPRAflow for
high-throughput functional characterization of gene
regulatory elements, Nat. Protoc., 15, 2387-2412,
doi:10.1038/s41596-020-0333-5.
51. GTEx Consortium (2020) TheGTEx Consortium atlas
of genetic regulatory effects across human tissues,
Science, 369, 1318-1330, doi:10.1126/science.aaz1776.
52. Bryois, J., Calini, D., Macnair, W., Foo, L., Urich, E.,
Ortmann, W., Iglesias, V. A., Selvaraj, S., Nutma, E.,
Marzin,M., Amor,S., Williams,A., Castelo-Branco,G.,
Menon,V., De Jager,P., and Malhotra,D. (2022) Cell-
type-specific cis-eQTLs in eight human brain cell
types identify novel risk genes for psychiatric and
neurological disorders, Nat. Neurosci., 25, 1104-1112,
doi:10.1038/s41593-022-01128-z.
53. Capurso,D., Tang,Z., and Ruan,Y. (2020) Methods for
comparative ChIA-PET and Hi-C data analysis, Meth-
ods, 170, 69-74, doi:10.1016/J.YMETH.2019.09.019.
54. Huang, L., Yang, Y., Li, G., Jiang, M., Wen, J., Abnou-
si,A., Rosen, J.D., Hu,M., and Li,Y. (2022) Asystem-
atic evaluation of Hi-C data enhancement methods
for enhancing PLAC-seq and HiChIP data, Brief. Bioin-
form., 23, bbac145, doi:10.1093/BIB/BBAC145.
55. Khalil, A. M. (2020) The genome editing revolution:
review, J.Genet. Eng. Biotechnol., 18, 68, doi:10.1186/
S43141-020-00078-Y.
56. Moon, S. B., Kim, D. Y., Ko, J. H., and Kim, Y. S.
(2019) Recent advances in the CRISPR genome ed-
iting tool set, Exp. Mol. Med., 51, 1-11, doi: 10.1038/
s12276-019-0339-7.
57. Zhang,P., Xia, J.H., Zhu,J., Gao,P., Tian, Y.J., Du,M.,
Guo, Y. C., Suleman, S., Zhang, Q., Kohli, M., Till-
mans, L. S., Thibodeau, S. N., French, A. J., Cerhan,
J. R., Wang, L. D., Wei, G. H., and Wang, L. (2018)
High-throughput screening of prostate cancer risk loci
by single nucleotide polymorphisms sequencing, Nat.
Commun., 9, 2022, doi:10.1038/s41467-018-04451-x.
58. Rodríguez-Rodríguez, D.R., Ramírez-Solís, R., Garza-
Elizondo, M. A., Garza-Rodríguez, M. D. L., and Bar-
rera-Saldaña, H.A. (2019) Genome editing: a perspec-
tive on the application of CRISPR/Cas9 to study human
diseases (Review), Int. J. Mol. Med., 43, 1559-1574,
doi:10.3892/ijmm.2019.4112.
59. Yang,H., Ren,S., Yu,S., Pan,H., Li,T., Ge,S., Zhang,J.,
and Xia, N. (2020) Methods favoring homology-di-
rected repair choice in response to CRISPR/Cas9
Induced-double strand breaks, Int. J. Mol. Sci., 21,
6461, doi:10.3390/IJMS21186461.
60. Rees, H.A., and Liu, D.R. (2018) Base editing: precision
chemistry on the genome and transcriptome ofliving
cells, Nat. Rev. Genet., 19, 770-788, doi:10.1038/s41576-
018-0059-1.
61. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and
Liu, D.R. (2016) Programmable editing of a target base
in genomic DNA without double-stranded DNA cleav-
age, Nature, 533, 420-424, doi:10.1038/nature17946.
62. Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S.,
Badran, A. H., Bryson, D. I., and Liu, D. R. (2017)
Programmable base editing of A·T to G·C in genom-
ic DNA without DNA cleavage, Nature, 551, 464-471,
doi:10.1038/nature24644.
63. Zhao,D., Li,J., Li,S., Xin,X., Hu,M., Price, M.A., Ross-
er, S. J., Bi,C., and Zhang,X. (2021) Glycosylase base
editors enable C-to-A and C-to-G base changes, Nat.
Biotechnol., 39, 35-40, doi:10.1038/s41587-020-0592-2.
64. Weng, N., Miller, M., Pham, A. K., Komor, A. C., and
Broide, D.H. (2022) Single-base editing of rs12603332
on chromosome 17q21 with a cytosine base editor
regulates ORMDL3 and ATF6α expression, Allergy, 77,
1139-1149, doi:10.1111/ALL.15092.
65. Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa,
A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson,C.,
Newby, G. A., Raguram, A., and Liu, D. R. (2019)
Search-and-replace genome editing without dou-
ble-strand breaks or donor DNA, Nature, 576, 149-157,
doi:10.1038/s41586-019-1711-4.
66. Jiang, Y., Chai, Y., Qiao,D., Wang, J., Xin, C., Sun, W.,
Cao,Z., Zhang,Y., Zhou,Y., Wang, X.C., and Chen, Q.J.
(2022) Optimized prime editing efficiently generates
glyphosate-resistant rice plants carrying homozygous
TAP-IVS mutation in EPSPS, Mol. Plant, 15, 1646-1649,
doi:10.1016/j.molp.2022.09.006.
67. Hassan, M. M., Yuan, G., Chen, J. G., Tuskan, G. A.,
and Yang, X. (2020) Prime editing technology and