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Abstract—Currently, numerous associations between genetic polymorphisms and various diseases have been
characterized through the Genome-Wide Association Studies. Majority of the clinically significant polymorphisms
are localized in non-coding regions of the genome. While modern bioinformatic resources make it possible
to predict molecular mechanisms that explain influence of the non-coding polymorphisms on gene expression,
such hypotheses require experimental verification. This review discusses the methods for elucidating molecu-
lar mechanisms underlying dependence of the disease pathogenesis on specific genetic variants within the
non-coding sequences. A particular focus is on the methods for identification of transcription factors with binding
efficiency dependent on polymorphic variations. Despite remarkable progress in bioinformatic resources enabling
prediction of the impact of polymorphisms on the disease pathogenesis, there is still the need for experimental

approaches to investigate this issue.
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INTRODUCTION

In spite of the fact that human genomes are iden-
tical by 99.9%, it is precisely the remaining 0.1% of
genetic variants that underlie phenotypic differences,
including susceptibility to diseases [1]. These genet-
ic variations are Single Nucleotide Variation (SNV) or
Single Nucleotide Polymorphism (SNP), insertion/de-
letion (indel), and Structural Variation of more than
50 b.p. in length (SV) [2]. The most widespread ge-
netic variation is SNP, i.e.,, a DNA sequence variation

(a variant allele) of one nucleotide in size in the mem-
bers of the same species, which occurs within a pop-
ulation at a frequency of at least 1% [3]. SNPs occur
every 200-300 b.p. in the genome, being localized in its
coding and regulatory parts (promoters, enhancers, in-
trons, and untranslated regions) [4, 5]. Importance of
studying SNP lies in the fact that such genetic variants
are often associated with different diseases, as it has
been shown by numerous Genome-Wide Association
Studies (GWAS). About 95% of the clinically significant
SNPs are localized in non-coding genome regions [6],
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HDR, homology-directed repair; MPRA, massively parallel reporter assay; QTL, quantitative trait locus; raQTL, reporter assay
quantitative trait locus; SNP, single nucleotide polymorphism; TF, transcription factor; UTR, untranslated region.
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and their functional significance is probably associ-
ated with the changes in the regulatory characteris-
tics of the regions surrounding the polymorphism [7].
Such regulatory regions of the eukaryotic genome may
be promoters, enhancers, 5- and 3'-untranslated re-
gions (UTR) of protein-coding genes, gene regions of
non-coding RNA (ncRNA), and splicing regulatory el-
ements (SRE) [5, 8]. Promoters initiate gene transcrip-
tion and enhancer elements increase the rate of this
initiation [9]. Promoters are preferred sites for bind-
ing transcription factors (TFs) and RNA polymerase II
to DNA and include the region of the first transcribed
nucleotide of the transcript (transcription start site,
TSS) [10]. Enhancers, which have been identified for
the first time with the help of reporter analysis as ele-
ments capable of enhancing the reporter gene expres-
sion [11], are the platforms for TF binding that can act
irrespective of orientation, distance, and localization
relative to the target gene [12]. The 5'- and 3'-UTRs play
an important role in post-transcriptional regulation of
gene expression and are part of mature coding mRNA.
For example, 5-UTRs contain different regulatory com-
ponents influencing translation initiation, and 3-UTRs
comprise the sequences that bind microRNA and lead
to transcript degradation [5]. In addition, it should be
noted that the non-coding polymorphisms within UTR
could also be involved in transcription regulation, be-
cause the 5-UTR sequence usually overlaps with the
promoter regions of the genes, while the 3'-UTR se-
quence could overlap with other regulatory elements
of the genes, e.g., enhancers [13]. Non-coding polymor-
phisms are also localized in ncRNA; in recent years,
a lot of information has been obtained about their
effects on RNA maturation, transcription regulation,
chromatin remodeling, and post-transcriptional mod-
ifications of RNA [14].

Being the most frequently occurring class of genetic
variants, SNPs are the major genetic marker for Quan-
titative Trait Loci (QTL) mapping; they further could be
conditionally divided into those regulating gene expres-
sion directly at the transcriptional and chromatin levels,
exerting effect on the mRNA level (eQTL - expression
QTL regulating gene expression at the transcriptional
level), and those influencing post-transcriptional pro-
cesses (sQTL - splicing QTL regulating alternative splic-
ing of pre-mRNA; pQTL - protein QTL regulating protein
expression) [15]. The following mechanism of function-
al effects of polymorphisms at the genomic level could
be suggested: functions of the regulatory elements are
impaired due to the change in the sequence of the sites
for TF-DNA interaction (both decrease and increase in
binding efficiency) [16]. At the post-transcriptional lev-
el, non-coding polymorphisms could affect activity of
the 5'- and 3'-UTR mRNA, which play a key role in trans-
lation regulation and mRNA stability, including due to
the change in the regulatory microRNA binding [17-19].
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In addition, SNPs in the sequence of immature
microRNAs could affect efficiency of microRNA matu-
ration and change efficiency of mRNA binding [20, 21],
and allele variants within the InRNA (long non-coding
RNA) could modulate, with different efficiency, concen-
tration of the complementary microRNA [22]. Consid-
erable number of functional genetic variants classified
as sQTL is localized in the splicing regulatory elements,
directly changing sequence of the splicing sites or mod-
ifying binding sites for the RNA-binding proteins [23].
The main mechanisms of effects of non-coding poly-
morphisms on gene expression regulation are shown
in Fig. 1.

The present review describes main experimental
approaches to the analysis of functional non-coding
allele variations, including the methods for determi-
nation of TF with binding efficiency dependent on the
allele variation.

ANALYSIS OF THE EFFECTS
OF GENETIC POLYMORPHISMS ON GENE
EXPRESSION USING REPORTER GENES

Experimental methods used for studying the ef-
fects of polymorphisms on gene expression can be di-
vided into two large groups: the studies with involve-
ment of genetic reporter constructs and the studies of
polymorphisms directly in the native genomic context.

The former group of methods involves reporter
genetic constructs, where the effect of genetic vari-
ant on a regulatory element is determined by the re-
porter gene activity (reporter assay QTL, raQTL). They
also involve classical technique of luciferase reporter
analysis, where the allele variants of the regulatory se-
quence under study (a promoter or an enhancer) are
integrated into the reporter construct, and activities of
the reporter genes in the resultant constructs are com-
pared after their transfection into a physiologically
relevant cell types [24]. The method of dual-luciferase
assay was used to describe numerous raQTL in differ-
ent types of cells and regulatory elements. For exam-
ple, the previously proposed molecular mechanisms ex-
plain relationship between the development of diseases
and genetic polymorphisms localized in the regulatory
regions of different genes: promoters [25-28], closely
located enhancer regions [29, 30], and enhancers locat-
ed at distant intergenic loci [31, 32].

Search for sQTL in the systems using reporter
genes is usually limited by the size of the gene under
study, if it exceeds capacity of the reporter plasmid.
In such situation, the so-called reporter minigenes are
used. A minigene construct includes a fragment of the
studied locus containing a polymorphism and suffi-
cient for reproduction of the natural pattern of splicing
between the splicing reporters (as a rule, between two
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Fig. 1. Main mechanisms of the effects of non-coding polymorphisms on regulation of gene expression (the image was produced

using BioRender.com).

exons). Ability of the region under study to influence
splicing efficiency is measured based on expression of
the target transcript, or, in a nuclear extract, by quan-
titative PCR analysis (qPCR), or, in live cells, if the re-
porter protein encoded by the minigene allows it [33].
For example, the reporter analysis of minigenes was
used to characterize polymorphisms regulating gene
splicing of the SCN1A subunit of the calcium channel
associated with epilepsy [34], the RAD51C component of
DNA repair system acting as a tumor suppressor [35], etc.

HIGH-THROUGHPUT REPORTER ASSAYS

Over the past decade, numerous modifications of
high-throughput reporter assays have been developed.
They can be categorized according to the regulatory
regions studying of which they allow, as well as ac-
cording to technological features used. For example,
the Massively Parallel Reporter Assay (MPRA) proto-
col involves synthesis of DNA sequences (potential en-
hancers/promoters, 5-UTR or 3-UTR) with addition of
unique barcodes and cloning of these sequences into
reporter plasmids, which are next transfected into the
cell types of interest. Activity of the regulatory regions
is analyzed using high-throughput sequencing and
quantification of barcodes, which unambiguously de-
termine a particular regulatory sequence and correlate

with the RNA level of the reporter gene [36, 37]. MPRA
is obviously suitable not only for studying functional-
ity of the regulatory elements but also for assessing
functional effects of their genetic variants [38]. For ex-
ample, MPRA was used for screening polymorphisms
located in the non-coding regions of the genomes and
associated with schizophrenia and Alzheimer’s disease.
It is interesting that only 9 out of 148 SNPs with the
allele differences in the K562 and 53 cells have ex-
hibited allele differences in both SK-SY5Y cell lines,
clearly demonstrating that genetic variants usually
exert their regulatory effects only in certain types of
cells [39]. MPRA applied to the library of human gene
5'-UTRs made it possible to reveal 45 disease-associat-
ed allele variations exerting significant effects on the
process of loading mRNAs onto ribosomes; however,
it is interesting that the data on most of the revealed
variants proved to be insufficient to change classifica-
tion of pathogenicity in the Clinvar database, and the
most striking effect was demonstrated by 3 polymor-
phisms generating a new start codon, i.e., affecting pro-
tein structure [40]. In another work, Griesemer stud-
ied more than 12,000 3'-UTR variants from 6 human
cell lines, which were associated with human diseas-
es and/or were under positive pressure in the human
population [41]. It turned out that several hundreds of
them had significant effects on the level of reporter
transcript in at least one cell line, and several tens
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of them coincided with the previously character-
ized variants with any level of clinical significance.
Interestingly, only for two SNPs present in the TRIM14
gene of viral defense and in the PILRB gene associated
with age-related macular degeneration, combination
of novelty and degree of influence on the level of the
transcript proved to be sufficient to verify the hypoth-
esis using the Cas9-mediated allele substitution in the
genomic context [41]. Technological limitations of
MPRA also include length of the tested DNA fragments
(up to 130-230 b.p.) and number of the tested constructs
(up to 100-200 thousand sequences) [42].

There are high-throughput approaches involving
sequences obtained from the genomic DNA. For exam-
ple, SURE (Survey of Regulatory Elements) was devel-
oped with the involvement of sequencing data for the
genomes of cell lines originating from four different
ethnic groups and optimized to study potential effect of
a single-nucleotide substitution on activity of the reg-
ulatory elements [43]. Random fragments of genomic
DNA of several hundred b.p. in length are cloned in
the reporter plasmid without a promoter, which, when
transfected into the cultured cells, produce a transcript
only if the inserted fragment carries a functional tran-
scription start site. Since transcripts can produce both
active promoters and enhancers, this method makes it
possible to analyze activities of both types of regula-
tory elements. Like in the MPRA technique, the tran-
scripts are analyzed by high-throughput sequencing
and quantified with involvement of a barcode unique
for each genomic fragment under study. This approach
makes it possible to test activity of the regulatory ele-
ments containing alternative alleles of several millions
of different SNPs (i.e., most of the known ones).

One another method that allows raQTL identifica-
tion — High-resolution Dissection of Regulatory Activity
(HiDRA) [42] - also involves fragmentation of genomic
DNA and is a combination of the ATAC-seq and STARR-
seq techniques. ATAC-seq (Assay for Transposase-Acces-
sible Chromatin using sequencing) makes it possible
to enrich samples with the transposase-accessible,
i.e., open, chromatin, while STARR-seq (Self-Transcrib-
ing Active Regulatory Region sequencing) is a reporter
assay, where putative regulatory elements (which are
able to enhance transcriptional activity of the reporter)
are cloned in 3'-UTR of the reporter gene and thereby
promote their own transcription. Next, active DNA se-
quences are identified and quantified by high-through-
put RNA sequencing [44]. For example, HiDRA made
it possible to identify a 76-b.p. driver element in the
IKZF3 gene locus, which included rs12946510 associ-
ated with multiple sclerosis; hence, this SNP can be
identified as potentially functional [42]. Indeed, fur-
ther functional testing showed that presence of the
risk allele rs12946510 reduced activation of T helpers
and expression of the IKZF3 and ORMDL3 genes [45].
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An important stage of processing the results of each
of the high-throughput methods described above is
using probabilistic mathematical models such as, e.g.,
the SHARPR-RE algorithm (Systematic High-resolution
Activation and Repression Prediction from Reporter as-
says with Random Endpoints) [46], for analysis of the
sequence overlap and assessment of the effects of par-
ticular nucleotides on activity of these sequences.

High-throughput reporter assays of polymor-
phic variants include Massively Parallel Splicing As-
say (MaPSY) [47], which was used to study impaired
splicing in the case of autism spectrum disorders.
The screening results were used to characterize genetic
variants in the TNRC6C, MAPKS8IP1, and USP45 genes,
and it has been shown that the proteins of TNRC6 fam-
ily could increase the risk of autism development [48].
Recently, the method of Cre-dependent MPRA in vivo
has been proposed for functional analysis of the library
of 3-UTRs with genetic variants associated with autism.
Quantification of the transcripts depending on activity
of the regulatory element was performed in particular
types of neurons by transduction of the libraries into
the brain tissues of mice with tissue-specific expression
of Cre recombinase. This method makes it possible to
study regulatory effect in a more relevant cellular
context, because neurons have an absolutely differ-
ent expression profile of trans-acting factors (e.g., TF
and microRNA) compared to other cell lines [49].

Main limitation of the methods based on reporter
assays is absence of the relevant chromatin context,
which accompanies the regulatory element in the na-
tive genome. This limitation is partially eliminated in
the lentiMPRA technique, when library with the reg-
ulatory elements under study is created in a lentivi-
ral vector, which is integrated into the genome, facil-
itating analysis of transcription within the chromatin
context [50].

FUNCTIONAL ANALYSIS
OF GENETIC POLYMORPHISMS
IN THE NATIVE GENOMIC CONTEXT

With regard to the effects of genetic variants
on pathogenesis of a disease, it is important to take
into account chromatin context which, in turn, var-
ies between the different types and functional states
of the cells. The eQTL mapping per se makes it possi-
ble to relate a particular genotype to the changes in
mRNA levels of potential target genes in the native
genomic context, including tissue specificity [51, 52].
Functional relationship between the genes and dis-
tant regulatory loci can be found by determining 3D
chromatin organization using methods such as Hi-C
(high-throughput chromosome conformation capture),
ChIA-PET (chromatin interaction analysis with paired-
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end tag sequencing), and their modifications [53, 54].
Comparison of the 3D tissue-specific genomic maps
with disease-associated regulatory SNPs makes it pos-
sible to identify the most probable genes involved in
pathogenesis. Hence, the most accurate method for ver-
ification of hypotheses constructed is genome editing
and producing of cells with the desired combinations
of variants. Precise and efficient editing of particular
nucleotides in the human genome has become a daunt-
ing but realistic challenge due to the RNA-programma-
ble bacterial nucleases found in the CRISPR (clustered
regularly interspaced short palindromic repeats)-Cas
system [55]. The double-strand break (DSB) in DNA
induced in the target site by the Cas9 nuclease from
Streptococcus pyogenes (currently, the most popular
genome editor) triggers cellular mechanisms of DNA
repair, including homology-directed repair (HDR) [56],
which is used in the CRISPR-HDR methods, when the tar-
get region is repaired in the presence of a homologous
DNA sequence containing the necessary allele variant.

This method used in many polymorphism stud-
ies [57, 58] has a significant limitation with respect
to efficiency, because DSB repair in mammals occurs
mainly with involvement of nonhomologous end
joining (NHE]) [59]. Due to these peculiarities, the
CRISPR-HDR editing takes a lot of efforts and could
lead to the impaired expression of the neighboring
genes [45]. Another approach to precise genome ed-
iting, which performs well in a proper nucleotide
context, is base editing (BE) with involvement of the
catalytically inactive dCas9 (dead Cas9) or Cas9 with
nickase activity (nCas9) fused with deaminase. With
respect to enzyme specificity, there are cytosine (con-
verting CeG into T+A) and adenine (converting AT into
G+C) editors, as well as an editor based on cytidine de-
aminase and uracil-DNA glycosylase (converting CeG
into G+C) [60-63]. For example, the cytosine base editing
system was used to study polymorphism rs12603332
associated with the risk of asthma and demonstrated
its effect on expression of the genes of sphingolipid
biosynthesis regulator ORMDL3 and cellular stress re-
sponse modulator ATF6a in the Jurkat T-cell line [64].
Due to the absence of the stage of DSB formation, the
BE technique is safer for the cells than CRISPR-HDR;
however, it has limitations with respect to enzyme
activities and off-target editing of the neighboring
nucleotides [60, 61]. Another recently developed and
promising approach to genome editing is prime edit-
ing. The editor is based on the mutant nuclease Cas9
inserting single-strand breaks (nCas9) fused with the
reverse transcriptase (MMLV RT) and uses a modified
guide RNA (pegRNA), which simultaneously determines
the target site for nCas9, acts as a primer for MMLV RT,
and is an RNA template for the synthesis of a new DNA
sequence. The edited DNA strand is then included into
the genome by endogenous cellular processes [65].

UVAROVA et al.

Due to the high-precision of editing and wider
area of its application compared to the standard base
editors, prime editing has a great potential for working
with single-nucleotide polymorphisms. Single-nucle-
otide substitutions are used for directed evolution in
the selection of agricultural crops [66, 67]. Mouse mod-
els were used to demonstrate low off-target activity of
prime editing when changing the variant of non-coding
polymorphism compared to CRISPR-HDR [68]. In addi-
tion, prime editing in human myoblasts was used to
correct mutation in the protein-coding region of the
calcium channel gene RYR1 associated with motor im-
pairments [69]. Major fundamental limitation of prime
editing is large size of the editor and difficulties with its
delivery into the cells [70]. In the case of high-through-
put screening systems development, the problem of
delivery could be solved using lentiviral transduction
of the target cells by the constructs encoding the edi-
tor and pegRNAs. Subsequent cultivation of the cells
for several weeks makes it possible to achieve editing
efficiency sufficient for studying functional effects of
hundreds and even thousands of single-nucleotide sub-
stitutions in a single experiment [71].

IDENTIFICATION OF TRANSCRIPTION
FACTORS MEDIATING THE ALLELE-SPECIFIC
DIFFERENCE IN THE ACTIVITIES
OF REGULATORY ELEMENTS

Identification of different types of QTL (eQTL,
raQTL, etc.) does not provide information about par-
ticular molecular mechanism affected by a particular
genetic variant; therefore, further functional annota-
tion remains relevant. As mentioned before, the mech-
anisms of effects of polymorphisms on the functions of
regulatory element include changes in the properties
of promoter and enhancer regions, 5-UTR and 3'-UTR,
ncRNA, as well as impaired splicing. The best studied
cause of the dependence of the properties of regulato-
ry elements on SNPs localized in them is capability of
the single-nucleotide substitution to influence affinity
to the functional transcription factor.

There are various in silico approaches to predict
the preferred TF binding motifs, in most cases based
on Positional Weight Matrices (PWM) formed by the
multiple alignment of TF-binding sequences [72, 73].
In turn, information about the particular TF-binding
sequences can be obtained by high-throughput genome-
wide mapping of binding sites in vivo, e.g., methods
based on Chromatin Immunoprecipitation (ChIP) or on
high-throughput systemic evolution of ligands by ex-
ponential enrichment (HT-SELEX) for the selection of
TF-binding sequences in vitro [74]. Genome sequences
associated with the specific proteins in their native
chromatin context are identified by the ChIP-seq tech-
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Fig. 2. Methods for identification of functional transcription factors with allele-specific binding to the region of polymorphism

(the image was produced using BioRender.com).

nique combining chromatin immunoprecipitation with
subsequent high-throughput DNA sequencing [75].
Sequences optimal for binding of a particular TF
(probably not existing in nature) are found with the
involvement of SELEX methods for enrichment of the
libraries of randomly generated oligonucleotides with
specific sequences exhibiting high affinity to a given
TF [76]. The are well-known PWM motif databases in-
cluding TRANSFAC [77], HOCOMOCO [78], JASPAR [79],
HOMER [80], iRegulon [81], etc. Application of bioinfor-
matics makes it possible to assess potential changes in
the strength of TF binding depending on the variant of
polymorphism. Efficiency of the allele-specific TF bind-
ing can be estimated directly by the ChIP-Seq data, if
sequencing depth allows detection of the statistically
significant deviations in the frequencies of alternative
SNP alleles in the binding site [82, 83]. Combination of
ChIP with quantification of alleles, ChIP-AS-qPCR (ChIP-
based allele-specific quantitative PCR), makes it possi-
ble to measure effects of the allele variants on efficien-
cy of TF binding in a living cell [57]. A high-throughput
variant of the analysis of TF binding with polymor-
phisms in the regulatory regions, SNP-SELEX, based on
the HT-SELEX has been proposed. This method allows
analysis of the effects of about 100,000 allele variants
of the potentially regulatory (GWAS-annotated) SNPs
on binding of several hundreds of TFs [84]. Classical
method of analysis of DNA-protein interactions based
on the shifts in electrophoretic mobility (electropho-
retic mobility shift assay, EMSA) can also be consid-
ered as an experimental approach to TF identification.
During EMSA, proteins under study specifically bind to
the labeled oligonucleotide probes, which is followed
by analysis of mobility of such fragments using elec-
trophoresis in polyacrylamide gel under native condi-
tions; relative strength of the binding could be assessed
based on the amount of the formed complex [85]. Spec-
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ificity of determination of protein components in the
complexes is achieved by adding antibodies against a
specific protein in the reaction: EMSA-supershift [86].
There are also high-throughput methods for analysis of
large amounts of SNP allowing to find out effects of the
allele variants on TF binding based on incubation of
the SNP-containing oligonucleotides with a nuclear ex-
tract from the particular cell type, followed by sequenc-
ing of the enriched libraries; such methods are SNPs-
Seq [57] and Reel-Seq [87]. Neither of these methods
per se makes it possible to establish, which TF binds to
a particular allele variant; however, such information
could be obtained by mass spectrometry and/or using a
purified TF instead of the nuclear extract [24, 88].

Bioinformatics databases suitable for analysis of
SNP of interest include the on-line resource PERFECTOS-
ARE https://opera.autosome.org/perfectosape [76], where
the predicted TF binding motifs are collected from
various databases: HOCOMOCO [78], JASPAR [79],
HT-SELEX [89], etc. Another bioinformatics resource,
ADASTRA [82], that provides comprehensive data on
the allele-specific TF binding with allele variants in
different types of cells, is based on the HOCOMOCO
and SPRy-SARUS data [90], as well as on the allele-
specific data of the DNase footprinting assay [91]. The
ANANASTRA resource [92] based on the systematic
analysis of allelic imbalance in the ChIP-Seq experi-
ments, makes it possible to annotate a great number of
genetic variants in parallel.

One of the examples of using such annotation
could be functional characterization of the SNPs
rs7873784 and rs71327024 localized in the regulato-
ry regions of the TLR4 and CXCR6 genes, respective-
ly [13, 31]. According to the results of GWAS, both
SNPs are disease-associated: the minor C allele of
rs7873784 is associated with rheumatoid arthritis and
the minor T allele of rs71327024 is associated with
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severe COVID-19. The reporter assays have shown
that both SNPs are raQTL; therefore, bioinformatics
analysis was used to find TFs PU.1 (rs7873784) and
c-Myb (rs71327024) relevant for the respective types
of cells characterized by the allele-dependent bind-
ing to SNP-containing sites. This hypothesis was veri-
fied using the genetic knockdown of TF with involve-
ment of small interfering RNA (siRNA), as well as the
DNA pull-down immunoprecipitation technique [93].
The latter includes incubation of oligonucleotides
containing alternative SNP variants with the nuclear
extract from the relevant cells and immunoprecip-
itation with the specific antibodies against the pre-
dicted TF, followed by quantification of the enriched
oligonucleotides. The described methods for iden-
tification of transcription factors with binding effi-
ciency depending on the allele of polymorphism are
shown in Fig. 2.

Due to continuously increasing amounts of data
and modern machine learning models, bioinformatic
computations provide a more precise annotation of the
candidate TFs with allele-specific binding to the SNP re-
gion [94-96]. However, clinical validation and a fortiori
application of these data in diagnostics and probably
treatment of the diseases are possible only after exper-
imental validation in different types of cells in the rel-
evant functional context.

CONCLUSIONS

To date, meta-analysis of large amounts of experi-
mental data makes it possible to develop bioinformat-
ics tools for searching for the most probable functional
genetic variants, as well as for prediction of particu-
lar mechanisms of their effects on pathogenesis of the
diseases. Overwhelming majority of the genetic vari-
ants are localized in the non-coding regions of the ge-
nome; they affect functions of the genes by regulating
their expression. Such regulation could vary widely
depending on the type and functional state of cells,
which is not always taken into consideration in the
case of in silico methods involving statistical general-
izations. In view of the above, it is still relevant to use
versatile experimental techniques for characterization
of particular genetic variants. The most informative
method for studying effects of the genetic variants on
phenotype is development of precise genetic models
using genome editing techniques. However, due to the
difficult procedure of precise genome editing, prelim-
inary characterization of allele variants under study
by the reporter assays remains relevant.
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