FEMTOSECOND DYNAMICS OF CHLOROPHYLL TETRAMER 1593
BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
11. Renger, G., Pieper, J., Theiss, C., Trostmann, I.,
Paulsen,H., Renger, T., Eichler, H.J., and Schmitt, F.J.
(2011) Water soluble chlorophyll binding protein of high-
er plants: Amost suitable model system for basic analy-
ses of pigment–pigment and pigment–protein interac-
tions in chlorophyll protein complexes, J.Plant Physiol.,
168, 1462-1472, doi:10.1016/j.jplph.2010.12.005.
12. Alster, J., Lokstein, H., Dostál, J., Uchida, A., and Zig-
mantas, D. (2014) 2D spectroscopy study of water-soluble
chlorophyll-binding protein from lepidium virginicum,
J.Phys. Chem.B, 118, 3524-3531, doi:10.1021/jp411174t.
13. Fresch, E., Meneghin, E., Agostini, A., Paulsen, H., Car-
bonera, D., and Collini, E. (2020) How the protein envi-
ronment can tune the energy, the coupling, and the ultra-
fast dynamics of interacting chlorophylls: the example of
the water-soluble chlorophyll protein, J.Phys. Chem. Lett.,
11, 1059-1067, doi:10.1021/acs.jpclett.9b03628.
14. Theiss, C., Trostmann, I., Andree, S., Schmitt, F. J.,
Renger, T., Eichler, H. J., Paulsen, H., and Renger, G.
(2007) Pigment–pigment and pigment–protein interac-
tions in recombinant water-soluble chlorophyll proteins
(WSCP) from cauliflower, J.Phys. Chem.B, 111, 13325-
13335, doi:10.1021/jp0723968.
15. Renger, T., Trostmann, I., Theiss, C., Madjet, M. E.,
Richter, M., Paulsen, H., Eichler, H.J., Knorr, A., and
Renger, G. (2007) Refinement of a structural model of a
pigment–protein complex by accurate optical line shape
theory and experiments, J. Phys. Chem. B, 111, 10487-
10501, doi:10.1021/jp0717241.
16. Friedl, C., Fedorov, D. G., and Renger, T. (2022) Towards
a quantitative description of excitonic couplings in photo-
synthetic pigment-protein complexes: Quantum chemistry
driven multiscale approaches, Phys. Chem. Chem. Phys.,
24, 5014-5038, doi:10.1039/d1cp03566e.
17. Lahav, Y., Noy, D., and Schapiro, I. (2021) Spectral tun-
ing of chlorophylls in proteins – electrostatics vs. ring
deformation, Phys. Chem. Chem. Phys., 23, 6544-6551,
doi:10.1039/d0cp06582j.
18. Agostini, A., Meneghin, E., Gewehr, L., Pedron, D.,
Palm, D.M., Carbonera, D., Paulsen, H., Jaenicke, E.,
and Collini, E. (2019) How water-mediated hydrogen
bonds affect chlorophyll a/b selectivity in water-solu-
ble chlorophyll protein, Sci. Rep., 9, 18255, doi:10.1038/
s41598-019-54520-4.
19. Bednarczyk, D., Dym, O., Prabahar, V., Peleg, Y., Pike,
D. H., and Noy, D. (2016) Fine tuning of chlorophyll
spectra by protein-induced ring deformation, Angew. Che-
mie Int. Ed., 55, 6901-6905, doi:10.1002/anie.201512001.
20. Hughes, J. L., Razeghifard, R., Logue, M., Oakley, A.,
Wydrzynski, T., and Krausz, E. (2006) Magneto-op-
tic spectroscopy of a protein tetramer binding two exci-
ton-coupled chlorophylls, J.Am. Chem. Soc., 128, 3649-
3658, doi:10.1021/ja056576b.
21. Obukhov, Y. N., Neverov, K. V., Maleeva, Y. V., and
Kritsky, M.S. (2023) Chlorophyll a dimers bound in the
water-soluble protein BoWSCP photosensitize the reduc-
tion of cytochromec, Dokl. Biochem. Biophys., 509, 60-64,
doi:10.1134/S1607672923700126.
22. Takahashi, S., Uchida, A., Nakayama, K., and Satoh,H.
(2014) Three-step photoconversion of only three sub-
units of the water-soluble chlorophyll-binding protein te-
tramer from Chenopodium album, ProteinJ., 33, 337-343,
doi:10.1007/s10930-014-9565-y.
23. Kelly, S. M., Jess, T. J., and Price, N. C. (2005) How to
study proteins by circular dichroism, Biochim. Biophys.
Acta Proteins Proteomics, 1751, 119-139, doi: 10.
1016/
j.bbapap.2005.06.005.
24. Bradford, M. M. (1976) Arapid and sensitive method for
the quantitation of microgram quantities of protein utiliz-
ing the principle of protein-dye binding, Anal. Biochem.,
72, 248-254, doi:10.1016/0003-2697(76)90527-3.
25. Cherepanov, D. A., Shelaev, I. V., Gostev, F. E., Mame-
dov, M.D., Petrova, A.A., Aybush, A.V., Shuvalov, V.A.,
Semenov, A.Y., and Nadtochenko, V.A. (2017) Mecha-
nism of adiabatic primary electron transfer in photosys-
temI: Femtosecond spectroscopy upon excitation of reac-
tion center in the far-red edge of the QYband, Biochim.
Biophys. Acta Bioenerg., 1858, 895-905, doi: 10.1016/
j.bbabio.2017.08.008.
26. Dobryakov, A. L., Pérez Lustres, J. L., Kovalenko, S. A.,
and Ernsting, N. P. (2008) Femtosecond transient ab-
sorption with chirped pump and supercontinuum probe:
Perturbative calculation of transient spectra with gener-
al lineshape functions, and simplifications, Chem. Phys.,
347, 127-138, doi:10.1016/j.chemphys.2007.11.003.
27. Golubeva, E. N., Zubanova, E. M., Melnikov, M. Y.,
Gostev, F. E., Shelaev, I. V., and Nadtochenko, V. A.
(2014) Femtosecond spectroscopy and TD-DFT calcu-
lations of CuCl
4
2−
excited states, Dalt. Trans., 43, 17820-
17827, doi:10.1039/C4DT01409J.
28. Dobryakov, A. L., Kovalenko, S. A., Weigel, A., Ṕrez-
Lustres, J.L., Lange, J., Müller, A., and Ernsting, N.P.
(2010) Femtosecond pump/supercontinuum-probe spec-
troscopy: Optimized setup and signal analysis for sin-
gle-shot spectral referencing, Rev. Sci. Instrum., 81,
113106, doi:10.1063/1.3492897.
29. Kovalenko, S. A., Dobryakov, A. L., Ruthmann, J., and
Ernsting, N. P. (1999) Femtosecond spectroscopy of
condensed phases with chirped supercontinuum prob-
ing, Phys. Rev. A At. Mol. Opt. Phys., 59, 2369-2384,
doi:10.1103/PhysRevA.59.2369.
30. Šimůnek, J. and Hopmans, J.W. (2002). 1.7 Parame-
ter Optimization and Nonlinear Fitting, in Methods of
Soil Analysis (eds Dane, J. H. and Clarke Topp, G.),
pp. 139-157, doi:10.2136/sssabookser5.4.c7.
31. Clementson, L. A., and Wojtasiewicz, B. (2019) Data-
set on the absorption characteristics of extracted phyto-
plankton pigments, Data Br., 24, 103875, doi: 10.1016/
j.dib.2019.103875.
32. Sirohiwal, A., Berraud-Pache, R., Neese, F., Izsák, R.,
and Pantazis, D. A. (2020) Accurate computation of the
absorption spectrum of chlorophyll a with pair natural