ROKITSKAYA et al.1578
BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
2. Gomez-Consarnau, L., Raven, J. A., Levine, N. M.,
Cutter, L.S., Wang, D., Seegers, B., Aristegui, J., Fuhr-
man, J. A., Gasol, J. M., and Sanudo-Wilhelmy, S. A.
(2019) Microbial rhodopsins are major contributors to the
solar energy captured in the sea, Sci. Adv., 8, eaaw8855,
doi:10.1126/sciadv.aaw8855.
3. Spudich, J. L., Sineshchekov, O. A., and Govorunova,
E.G. (2014) Mechanism divergence in microbial rhodop-
sins, Biochim. Biophys. Acta, 1837, 546-552, doi:10.1016/
j.bbabio.2013.06.006.
4. Mukherjee, S., Hegemann, P., and Broser, M. (2019)
Enzymerhodopsins: novel photoregulated catalysts for
optogenetics, Curr. Opin. Struct. Biol., 57, 118-126,
doi:10.1016/j.sbi.2019.02.003.
5. Kirpichnikov, M. P. and Ostrovskiy (2019) Optoge-
netics and vision, Herald Russ. Acad. Sci., 89, 34-38,
doi:10.1134/S1019331619010039.
6. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J.P.,
and Lanyi, J.K. (1999) Structure of bacteriorhodopsin at
1.55A resolution, J.Mol. Biol., 291, 899-911, doi:10.1006/
jmbi.1999.3027.
7. Das, S., Singh, D., Madduluri, M., Chandrababunaidu,
M.M., Gupta, A., Adhikary, S.P., and Tripathy, S. (2015)
Draft genome sequence of bioactive-compound-produc-
ing cyanobacterium Tolypothrix campylonemoides strain
VB511288, Genome Announc., 3, e00226-15, doi:10.1128/
genomeA.00226-15.
8. Hasemi, T., Kikukawa, T., Watanabe, Y., Aizawa, T.,
Miyauchi, S., Kamo, N., and Demura, M. (2019) Pho-
tochemical study of a cyanobacterial chloride-ion pump-
ing rhodopsin, Biochim. Biophys. Acta, 1860, 136-146,
doi:10.1016/j.bbabio.2018.12.001.
9. Yun, J. H., Park, J. H., Jin, Z., Ohki, M., Wang, Y., Lupa-
la, C.S., Liu, H., Park, S.Y., and Lee, W. (2020) Struc-
ture-based functional modification study of a cyanobac-
terial chloride pump for transporting multiple anions,
J.Mol. Biol., 432, 5273-5286, doi:10.3390/ma13143061.
10. Astashkin, R., Kovalev, K., Bukhdruker, S., Vaganova,S.,
Kuzmin, A., Alekseev, A., Balandin, T., Zabelskii, D.,
Gushchin, I., Royant, A., Volkov, D., Bourenkov, G.,
Koonin, E., Engelhard, M., Bamberg, E., and Gordeliy, V.
(2022) Structural insights into light-driven anion pumping
in cyanobacteria, Nat. Commun., 13, 6460, doi:10.1038/
s41467-022-34019-9.
11. Oesterhelt, D., Tittor, J., and Bamberg, E. (1992) Aunify-
ing concept for ion translocation by retinal proteins, J.Bio-
energ. Biomembr., 24, 181-191, doi:10.1007/BF00762676.
12. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrash-
in, A. A., Liberman, E.A., Nemecek, I.B., Ostroumov,
S.A., Semenov, A.Yu., and Skulachev, V.P. (1974) Direct
measurement of electric current generation by cytochrome
oxidase, H
+
-ATPase and bacteriorhodopsin, Nature,
249, 321-324, doi:10.1038/249321a0.
13. Drachev, L. A., Frolov, V. N., Kaulen, A.D., Liberman,
E. A., Ostroumov, S. A., Plakunova, V. G., Semenov,
A.Y., and Skulachev, V.P. (1976) Reconstitution of bio-
logical molecular generators of electric current. Bacteri-
orhodopsin, J.Biol. Chem., 251, 7059-7065, doi:10.1016/
S0021-9258(17)32940-X.
14. Bamberg, E., Apell, H.J., Dencher, N.A., Sperling, W.,
Stieve, H., and Lauger, P. (1979) Photocurrents generated
by bacteriorhodopsin on planar bilayer membranes, Bio-
phys. Struct. Mech., 5, 277-292, doi:10.1007/BF02426663.
15. Bamberg, E., Butt, H. J., Eisenrauch, A., and Fend-
ler,K. (1993) Charge transport of ion pumps on lipid bi-
layer membranes, Q.Rev. Biophys., 26, 1-25, doi:10.1017/
s0033583500003942.
16. Friedrich, T., Geibel, S., Kalmbach, R., Chizhov, I.,
Ataka, K., Heberle, J., Engelhard, M., and Bamberg, E.
(2002) Proteorhodopsin is a light-driven proton pump
with variable vectoriality, J. Mol. Biol., 321, 821-838,
doi:10.1016/s0022-2836(02)00696-4.
17. Shevchenko, V., Mager, T., Kovalev, K., Polovinkin, V.,
Alekseev, A., Juettner, J., Chizhov, I., Bamann, C.,
Vavourakis, C., Ghai, R., Gushchin, I., Borshchevskiy,V.,
Rogachev, A., Melnikov, I., Popov, A., Balandin, T.,
Rodriguez-Valera, F., Manstein, D.J., Bueldt, G., Bam-
berg, E., and Gordeliy, V. (2017) Inward H
+
pump xe-
norhodopsin: mechanism and alternative optogenetic ap-
proach, Sci. Adv., 3, e1603187, doi:10.1126/sciadv.1603187.
18. Schuler, M. A., Denisov, I. G., and Sligar, S.G. (2013)
Nanodiscs as a new tool to examine lipid-protein inter-
actions, Methods Mol. Biol., 974, 415-433, doi: 10.1007/
978-1-62703-275-9_18.
19. Rokitskaya, T. I., Maliar, N. L., Siletsky, S. A., Gor-
deliy, V., and Antonenko, Y. N. (2022) Electrophysio-
logical characterization of microbial rhodopsin transport
properties: electrometric and ΔpH measurements us-
ing planar lipid bilayer, collodion film, and fluorescent
probe approaches, Methods Mol. Biol., 2501, 259-275,
doi:10.1007/978-1-0716-2329-9_12.
20. Rokitskaya, T. I., Maliar, N., Kovalev, K.V., Volkov, O.,
Gordeliy, V.I., and Antonenko, Y.N. (2021) Rhodopsin
channel activity can be evaluated by measuring the pho-
tocurrent voltage dependence in planar bilayer lipid mem-
branes, Biochemistry (Moscow), 86, 409-419, doi:10.1134/
S0006297921040039.
21. Selwyn, M. J., Dawson, A. P., Stockdale, M., and
Gains, N. (1970) Chloride-hydroxide exchange across
mitochondrial, erythrocyte and artificial lipid mem-
branes mediated by trialkyl-and triphenyltin compounds,
Eur. J. Biochem., 14, 120-126, doi: 10.1111/j.1432-1033.
1970.tb00268.x.
22. Antonenko, Y. N. (1990) Electrically silent anion transport
through bilayer lipid membrane induced by tributyltin and
triethyllead, J.Membr. Biol., 113, 109-113, doi:10.1007/
BF01872884.
23. Sato, T., Konno, H., Tanaka, Y., Kataoka, T., Nagai,K.,
Wasserman, H. H., and Ohkuma, S. (1998) Prodigios-
ins as a new group of H
+
/Cl
–
symporters that uncouple
proton translocators, J. Biol. Chem., 273, 21455-21462,
doi:10.1074/jbc.273.34.21455.