CHANNELRHODOPSINS 1569
BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
145. Kato, H. E., Zhang, F., Yizhar, O., Ramakrishnan, C.,
Nishizawa, T., Hirata, K., Ito, J., Aita, Y., Tsukazaki, T.,
Hayashi, S., Hegemann, P., Maturana, A. D., Ishitani, R.,
Deisseroth, K., and Nureki, O. (2012) Crystal structure of
the channelrhodopsin light-gated cation channel, Nature,
482, 369-374, doi:10.1038/nature10870.
146. Volkov, O., Kovalev, K., Polovinkin, V., Borshchevskiy,V.,
Bamann, C., Astashkin, R., Marin, E., Popov, A., Balan-
din, T., Willbold, D., Buldt, G., Bamberg, E., and Gor-
deliy, V. (2017) Structural insights into ion conduction by
channelrhodopsin2, Science, 358, eaan8862, doi:10.1126/
science.aan8862.
147. Oda, K., Vierock, J., Oishi, S., Rodriguez-Rozada, S.,
Taniguchi, R., Yamashita, K., Wiegert, J. S., Nishiza-
wa, T., Hegemann, P., and Nureki, O. (2018) Crystal
structure of the red light-activated channelrhodopsin
Chrimson, Nat. Commun., 9, 3949, doi:10.1038/s41467-
018-06421-9.
148. Marshel, J. H., Kim, Y. S., Machado, T. A., Quirin,S.,
Benson, B., Kadmon, J., Raja, C., Chibukhchyan, A.,
Ramakrishnan, C., Inoue, M., Shane, J. C., McKnight,
D. J., Yoshizawa, S., Kato, H. E., Ganguli, S., and
Deisseroth, K. (2019) Cortical layer-specific critical dy-
namics triggering perception, Science, 365, eaaw5202,
doi:10.1126/science.aaw5202.
149. Chen, R., Gore, F., Nguyen, Q. A., Ramakrishnan, C.,
Patel, S., Kim, S. H., Raffiee, M., Kim, Y. S., Hsueh,B.,
Krook-Magnusson, E., Soltesz, I., and Deisseroth, K.
(2020) Deep brain optogenetics without intracranial sur-
gery, Nat. Biotechnol., 39, 161-164, doi: 10.1038/s41587-
020-0679-9.
150. Govorunova, E. G., Sineshchekov, O. A., Rodarte, E. M.,
Janz, R., Morelle, O., Melkonian, M., Wong, G. K.-S.,
and Spudich, J.L. (2017) The expanding family of natu-
ral anion channelrhodopsins reveals large variations in
kinetics, conductance, and spectral sensitivity, Sci. Rep.,
7, 43358, doi:10.1038/srep43358.
151. Govorunova, E. G., Sineshchekov, O. A., Hemmati,R.,
Janz, R., Morelle, O., Melkonian, M., Wong, G.K. S.,
and Spudich, J. L. (2018) Extending the time domain
of neuronal silencing with cryptophyte anion chan-
nelrhodopsins, eNeuro, 5, ENEURO.0174-0118.2018,
doi:10.1523/ENEURO.0174-18.2018.
152. Dolgikh, D. A., Malyshev, A. Y., Salozhin, S. V., Nekraso-
va, O. V., Petrovskaya, L. E., Roshchin, M. V., Borodino-
va, A. A., Feldman, T. B., Balaban, P. M., Kirpichnikov,
M. P., and Ostrovsky, M.A. (2015) Anion-selective chan-
nelrhodopsin expressed in neuronal cell culture and in vivo
in murine brain: light-induced inhibition of generation of
action potentials, Dokl. Biochem. Biophys., 465, 424-427,
doi: 10.1134/S160767291506023X.
153. Mohammad, F., Stewart, J. C., Ott, S., Chlebikova, K.,
Chua, J. Y., Koh, T. W., Ho, J., and Claridge-Chang, A.
(2017) Optogenetic inhibition of behavior with anion chan-
nelrhodopsins, Nat. Methods, 14, 271-274, doi: 10.1038/
nmeth.4148.
154. Mohamed, G. A., Cheng, R. K., Ho, J., Krishnan, S.,
Mohammad, F., Claridge-Chang, A., and Jesuthasan,S.
(2017) Optical inhibition of larval zebrafish behaviour
with anion channelrhodopsins, BMC Biol., 15, 103,
doi:10.1186/s12915-017-0430-2.
155. Bergs, A., Schultheis, C., Fischer, E., Tsunoda, S. P.,
Erbguth, K., Husson, S. J., Govorunova, E.G., Spudich,
J.L., Nagel, G., Gottschalk, A., and Liewald, J.F. (2018)
Rhodopsin optogenetic toolbox v2.0 for light-sensitive
excitation and inhibition in Caenorhabditis elegans, PLoS
One, 13, e0191802, doi:10.1371/journal.pone.0191802.
156. Wilson, D. E., Scholl, B., and Fitzpatrick, D. (2018)
Differential tuning of excitation and inhibition shapes
direction selectivity in ferret visual cortex, Nature, 560,
97-101, doi:10.1038/s41586-018-0354-1.
157. Forli, A., Vecchia, D., Binini, N., Succol, F., Bovetti, S.,
Moretti, C., Nespoli, F., Mahn, M., Baker, C. A., Bolton,
M. M., Yizhar, O., and Fellin, T. (2018) Two-photon bidi-
rectional control and imaging of neuronal excitability with
high spatial resolution invivo, Cell Rep., 22, 3087-3098,
doi:10.1016/j.celrep.2018.02.063.
158. Andrei, A. R., Debes, S., Chelaru, M., Liu, X., Ro-
darte, E., Spudich, J. L., Janz, R., and Dragoi, V.
(2021) Heterogeneous side-effects of cortical inactiva-
tion in behaving animals, Elife, 10, e66400, doi:10.7554/
eLife.66400.
159. Huang, S., Ding, M., Roelfsema, M. R. G., Dreyer, I.,
Scherzer, S., Al-Rasheid, K. A. S., Gao, S., Nagel, G.,
Hedrich, R., and Konrad, K.R. (2021) Optogenetic con-
trol of the guard cell membrane potential and stomatal
movement by the light-gated anion channel GtACR1, Sci.
Adv., 7, doi:10.1126/sciadv.abg4619.
160. Zhou, Y., Ding, M., Gao, S., Yu-Strzelczyk, J.,
Krischke,M., Duan, X., Leide, J., Riederer, M., Muel-
ler, M. J., Hedrich, R., Konrad, K. R., and Nagel, G.
(2021) Optogenetic control of plant growth by a microbial
rhodopsin, Nat. Plants, 7, 144-151, doi: 10.1038/s41477-
021-00853-w.
161. Oppermann, J., Fischer, P., Silapetere, A., Liepe, B., Ro-
driguez-Rozada, S., Flores-Uribe, J., Peter, E., Keidel,A.,
Vierock, J., Kaufmann, J., Broser, M., Luck,M., Bartl,F.,
Hildebrandt, P., Simon Wiegert, J., Beja, O., Hege-
mann,P., and Wietek, J. (2019) MerMAIDs: a family of
metagenomically discovered marine anion-conducting
and intensely desensitizing channelrhodopsins, Nat. Com-
mun., 10, 3315, doi:10.1038/s41467-019-11322-6.
162. Malyshev, A. Y., Roshchin, M. V., Smirnova, G. R., Dol-
gikh, D. A., Balaban, P. M., and Ostrovsky, M. A. (2017)
Chloride conducting light activated channel GtACR2 can
produce both cessation of firing and generation of action
potentials in cortical neurons in response to light, Neuros-
ci. Lett., 640, 76-80, doi:10.1016/j.neulet.2017.01.026.
163. Messier, J. E., Chen, H., Cai, Z. L., and Xue, M. (2018)
Targeting light-gated chloride channels to neuronal som-
atodendritic domain reduces their excitatory effect in the
axon, Elife, 7, e38506, doi:10.7554/eLife.38506.