PETROVSKAYA et al.1554
BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
into the proton pumping by unusual proteorhodopsin
from nonmarine bacteria, Proc. Natl. Acad. Sci. USA, 110,
12631-12636, doi:10.1073/pnas.1221629110.
45. Zscherp, C., Schlesinger, R., Tittor, J., Oesterhelt, D.,
and Heberle, J. (1999) Insitu determination of transient
pKa changes of internal amino acids of bacteriorhodopsin
by using time-resolved attenuated total reflection Fouri-
er-transform infrared spectroscopy, Proc. Natl. Acad. Sci.
USA, 96, 5498-5503, doi:10.1073/pnas.96.10.5498.
46. Petrovskaya, L. E., Lukashev, E. P., Siletsky, S. A., Ima-
sheva, E. S., Wang, J. M., Mamedov, M. D., Kryukova,
E. A., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P.,
Balashov, S.P., and Lanyi, J.K. (2022) Proton transfer
reactions in donor site mutants of ESR, a retinal protein
from Exiguobacterium sibiricum, J. Photochem. Photobi-
ol.B, 234, 112529, doi:10.1016/j.jphotobiol.2022.112529.
47. Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Bal-
ashov, S. P., Dolgikh, D.A., Rubin, A.B., Kirpichnikov,
M. P., and Petrovskaya, L.E. (2019) Elimination of pro-
ton donor strongly affects directionality and efficiency of
proton transport in ESR, a light-driven proton pump from
Exiguobacterium sibiricum, Biochim. Biophys. Acta Bioener-
getics, 1860, 1-11, doi:10.1016/j.bbabio.2018.09.365.
48. Otto, H., Marti, T., Holtz, M., Mogi, T., Lindau, M.,
Khorana, H.G., and Heyn, M.P. (1989) Aspartic acid-96
is the internal proton donor in the reprotonaion of the
Schiff base of bacteriorhodopsin, Proc. Natl. Acad. Sci.
USA, 86, 9228-9232, doi:10.1073/pnas.86.23.9228.
49. Holz, M., Drachev, L. A., Mogi, T., Otto, H., Kaulen,
A.D., Heyn, M.P., Skulachev, V.P., and Khorana, H.G.
(1989) Replacement of aspartic acid-96 by asparagine in
bacteriorhodopsin slows both the decay of the M inter-
mediate and the associated proton movement, Proc. Natl.
Acad. Sci. USA, 86, 2167-2171, doi:10.1073/pnas.86.7.2167.
50. Dioumaev, A. K., Brown, L. S., Needleman, R., and
Lanyi, J.K. (2001) Coupling of the reisomerization of the
retinal, proton uptake, and reprotonation of Asp-96 in the
N photointermediate of bacteriorhodopsin, Biochemistry,
40, 11308-11317, doi:10.1021/bi011027d.
51. Sasaki, S., Tamogami, J., Nishiya, K., Demura, M., and
Kikukawa, T. (2021) Replaceability of Schiff base proton
donors in light-driven proton pump rhodopsins, J. Biol.
Chem., 297, 101013, doi:10.1016/j.jbc.2021.101013.
52. Balashov, S. P., Imasheva, E. S., Boichenko, V. A.,
Antón,J., Wang, J.M., and Lanyi, J.K. (2005) Xanthorho-
dopsin: a proton pump with a light-harvesting carot-
enoid antenna, Science, 309, 2061-2064, doi:10.1126/sci-
ence.1118046.
53. Luecke, H., Schobert, B., Stagno, J., Imasheva, E. S.,
Wang, J. M., Balashov, S. P., and Lanyi, J. K. (2008)
Crystallographic structure of xanthorhodopsin, the
light-driven proton pump with a dual chromophore, Proc.
Natl. Acad. Sci. USA, 105, 16561-16565, doi: 10.1073/
pnas.0807162105.
54. Ran, T., Ozorowski, G., Gao, Y., Sineshchekov, O. A.,
Wang, W., Spudich, J.L., and Luecke, H. (2013) Cross-
protomer interaction with the photoactive site in oligo-
meric proteorhodopsin complexes, Acta Cryst., D69, 1965-
1980, doi:10.1107/S0907444913017575.
55. Maciejko, J., Kaur, J., Becker-Baldus, J., and Glaubitz, C.
(2019) Photocycle-dependent conformational changes in
the proteorhodopsin cross-protomer Asp–His–Trp triad
revealed by DNP-enhanced MAS-NMR, Proc. Nat. Acad.
Sci. USA, 116, 8342-8349, doi:10.1073/pnas.1817665116.
56. Morizumi, T., Ou, W.-L., Van Eps, N., Inoue, K., Kan-
dori, H., Brown, L. S., and Ernst, O. P. (2019) X-ray
crystallographic structure and oligomerization of Gloeo-
bacter rhodopsin, Sci. Rep., 9, 1-14, doi:10.1038/s41598-
019-47445-5.
57. Siletsky, S. A., Lukashev, E. P., Mamedov, M. D., Bor-
isov, V. B., Balashov, S. P., Dolgikh, D.A., Rubin, A.B.,
Kirpichnikov, M.P., and Petrovskaya, L.E. (2021) His57
controls the efficiency of ESR, a light-driven proton
pump from Exiguobacterium sibiricum at low and high
pH, Biochim. Biophys. Acta Bioenergetics, 1862, 148328,
doi:10.1016/j.bbabio.2020.148328.
58. Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P.,
and Lanyi, J.K. (1999) Structure of bacteriorhodopsin at
1.55Å resolution, J.Mol. Biol., 291, 899-911, doi:10.1006/
jmbi.1999.3027.
59. Iverson, V., Morris, R. M., Frazar, C. D., Berthiaume,
C. T., Morales, R.L., and Armbrust, E.V. (2012) Untan-
gling genomes from metagenomes: revealing an uncultured
class of marine Euryarchaeota, Science, 335, 587-590,
doi:10.1126/science.1212665.
60. Martin-Cuadrado, A. B., Garcia-Heredia, I., Molto,
A. G., Lopez-Ubeda, R., Kimes, N., Lopez-Garcia, P.,
Moreira, D., and Rodriguez-Valera, F. (2015) Anew class
of marine Euryarchaeota group II from the Mediterra-
nean deep chlorophyll maximum, ISMEJ., 9, 1619-1634,
doi:10.1038/ismej.2014.249.
61. Finkel, O. M., Béjà, O., and Belkin, S. (2013) Global
abundance of microbial rhodopsins, ISMEJ., 7, 448-451,
doi:10.1038/ismej.2012.112.
62. Gómez-Consarnau, L., Raven, J. A., Levine, N. M.,
Cutter, L.S., Wang, D., Seegers, B., Arístegui, J., Fuhr-
man, J. A., Gasol, J. M., and Sañudo-Wilhelmy, S. A.
(2019) Microbial rhodopsins are major contributors to the
solar energy captured in the sea, Sci. Adv., 5, eaaw8855,
doi:10.1126/sciadv.aaw8855.
63. Kojima, K., Shibukawa, A., and Sudo, Y. (2020) The unlim-
ited potential of microbial rhodopsins as optical tools, Bio-
chemistry, 59, 218-229, doi:10.1021/acs.biochem.9b00768.
64. De Grip, W. J., and Ganapathy, S. (2022) Rhodopsins: an
excitingly versatile protein species for research, develop-
ment and creative engineering, Front. Chem., 10, 879609,
doi:10.3389/fchem.2022.879609.
65. Emiliani, V., Entcheva, E., Hedrich, R., Hegemann, P.,
Konrad, K.R., Lüscher, C., Mahn, M., Pan, Z.-H., Sims,
R.R., Vierock, J., and Yizhar, O. (2022) Optogenetics for
light control of biological systems, Nat. Rev. Meth. Prim-
ers, 2, 55, doi:10.1038/s43586-022-00136-4.