ROLE OF H
+
-ATPase IN ES AND PHOTOSYNTHETIC RESPONSES 1501
BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
induced by wounding in Bidens pilosa L., J. Exp. Bot.,
42, 131-137, doi:10.1093/jxb/42.1.131.
65. Lautner, S., Grams, T. E.E., Matyssek, R., Fromm, J.
(2005) Characteristics of electrical signals in poplar
and responses in photosynthesis, Plant Physiol., 138,
2200-2209, doi:10.1104/pp.105.064196.
66. Zimmermann, M. R., Maischak, H., Mithöfer, A.,
Boland, W., and Felle, H.H. (2009) System potentials, a
novel electrical long-distance apoplastic signal in plants,
induced by wounding, Plant Physiol., 149, 1593-1600,
doi:10.1104/pp.108.133884.
67. Zimmermann, M. R., Mithöfer, A., Will, T., Felle, H.H.,
and Furch, A.C. (2016) Herbivore-triggered electrophysi-
ological reactions: candidates for systemic signals in high-
er plants and the challenge of their identification, Plant
Physiol., 170, 2407-2419, doi:10.1104/pp.15.01736.
68. Vuralhan-Eckert, J., Lautner, S., and Fromm, J. (2018)
Effect of simultaneously induced environmental stim-
uli on electrical signalling and gas exchange in maize
plants, J. Plant Physiol., 223, 32-36, doi: 10.1016/
j.jplph.2018.02.003.
69. Yudina, L., Gromova, E., Grinberg, M., Popova, A.,
Sukhova, E., and Sukhov, V. (2022) Influence of burn-
ing-induced electrical signals on photosynthesis in pea
can be modified by soil water shortage, Plants, 11, 534,
doi:10.3390/plants11040534.
70. Yudina, L., Sukhova, E., Popova, A., Zolin, Yu., Abashe-
va, K., Grebneva, K., and Sukhov, V. (2023) Local action
of moderate heating and illumination induces propaga-
tion of hyperpolarization electrical signals in wheat plants,
Front. Sustain. Food Syst., 6, 1062449, doi: 10.3389/
fsufs.2022.1062449.
71. Yudina, L., Sukhova, E., Popova, A., Zolin, Y., Abashe-
va, K., Grebneva, K., and Sukhov, V. (2023) Hyperpolar-
ization electrical signals induced by local action of mod-
erate heating influence photosynthetic light reactions in
wheat plants, Front. Plant Sci., 14, 1153731, doi:10.3389/
fpls.2023.1153731.
72. Lew, R. R. (1989) Calcium activates an electrogenic pro-
ton pump in neurospora plasma membrane, Plant Physiol.,
91, 213-216, doi:10.1104/pp.91.1.213.
73. Grinberg, M., Mudrilov, M., Kozlova, E., Sukhov, V.,
Sarafanov, F., Evtushenko, A., Ilin, N., Vodeneev, V.,
Price, C., and Mareev, E. (2022) Effect of extremely
low-frequency magnetic fields on light-induced electric
reactions in wheat, Plant Signal. Behav., 17, e2021664,
doi:10.1080/15592324.2021.2021664.
74. Grabov, A., and Blatt, M. R. (1999) Asteep dependence of
inward-rectifying potassium channels on cytosolic free cal-
cium concentration increase evoked by hyperpolarization
in guard cells, Plant Physiol., 119, 277-288, doi:10.1104/
pp.119.1.277.
75. Gao, Y. Q., Wu, W. H., and Wang, Y. (2019) Electrophys-
iological identification and activity analyses of plasma
membrane K
+
channels in maize guard cells, Plant Cell
Physiol., 60, 765-777, doi:10.1093/pcp/pcy242.
76. Sukhova, E., Akinchits, E., and Sukhov, V. (2017) Math-
ematical models of electrical activity in plants, J.Membr.
Biol., 250, 407-423, doi:10.1007/s00232-017-9969-7.
77. Sukhova, E., Ratnitsyna, D., and Sukhov, V. (2021) Sto-
chastic spatial heterogeneity in activities of H
+
-ATP-ases
in electrically connected plant cells decreases threshold
for cooling-induced electrical responses, Int.J. Mol. Sci.,
22, 8254, doi:10.3390/ijms22158254.
78. Falhof, J., Pedersen, J. T., Fuglsang, A. T., and
Palmgren,M. (2016) Plasma membrane H
+
-ATPase reg-
ulation in the center of plant physiology, Mol. Plant.,
9, 323-337, doi:10.1016/j.molp.2015.11.002.
79. Fuglsang, A. T., and Palmgren, M. (2021) Proton and
calcium pumping P-type ATPases and their regulation of
plant responses to the environment, Plant Physiol., 187,
1856-1875, doi:10.1093/plphys/kiab330.
80. Katicheva, L., Sukhov, V., Akinchits, E., and Vodeneev,V.
(2014) Ionic nature of burn-induced variation poten-
tial in wheat leaves, Plant Cell Physiol., 55, 1511-1519,
doi:10.1093/pcp/pcu082.
81. Krupenina, N. A., and Bulychev, A. A. (2007) Action
potential in a plant cell lowers the light requirement for
non-photochemical energy-dependent quenching of
chlorophyll fluorescence, Biochim. Biophys. Acta, 1767,
781-788, doi:10.1016/j.bbabio.2007.01.004.
82. Krausko, M., Perutka, Z., Šebela, M., Šamajová, O.,
Šamaj, J., Novák, O., and Pavlovič, A. (2017) The role
of electrical and jasmonate signalling in the recognition
of captured prey in the carnivorous sundew plant Dros-
era capensis, New Phytol., 213, 1818-1835, doi: 10.1111/
nph.14352.
83. Białasek, M., Górecka, M., Mittler, R., and Karpiński, S.
(2017) Evidence for the Involvement of electrical, calcium
and ROS signaling in the systemic regulation of non-pho-
tochemical quenching and photosynthesis, Plant Cell
Physiol., 58, 207-215, doi:10.1093/pcp/pcw232.
84. Herde, O., Peña-Cortés, H., Fuss, H., Willmitzer, L., and
Fisahn, J. (1999) Effects of mechanical wounding, current
application and heat treatment on chlorophyll fluorescence
and pigment composition in tomato plants, Physiol. Plant.,
105, 179-184, doi:10.1034/j.1399-3054.1999.105126.x.
85. Sherstneva, O. N., Vodeneev, V. A., Katicheva, L.A., Sur-
ova, L.M., and Sukhov, V.S. (2015) Participation of in-
tracellular and extracellular pH changes in photosynthetic
response development induced by variation potential in
pumpkin seedlings, Biochemistry (Moscow), 80, 776-784,
doi:10.1134/S0006297915060139.
86. Kinoshita, T., Nishimura, M., and Shimazaki, Ki. (1995)
Cytosolic concentration of Ca
2+
regulates the plasma
membrane H
+
-ATPase in guard cells of fava bean, Plant
Cell, 7, 1333-1342, doi:10.1105/tpc.7.8.1333.
87. Sukhov, V. S., Gaspirovich, V. V., Gromova, E. N., Ladey-
nova, M.M., Sinitsyna, Yu.V., Berezina, E.V., Akinchits,
E.K., and Vodeneev, V.A. (2017) Decrease of mesophyll
conductance to CO
2
is a possible mechanism of abscis-
ic acid influence on photosynthesis in seedlings of pea