ION CHANNELS IN ELECTRICAL SIGNALING IN HIGHER PLANTS 1485
BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
76. Huh, S. M., Noh, E. K., Kim, H. G., Jeon, B.W., Bae,K.,
Hu, H.-C., Kwak, J.M., and Park, O.K. (2010) Arabi-
dopsis annexins AnnAt1 and AnnAt4 interact with each
other and regulate drought and salt stress responses, Plant
Cell Physiol., 51, 1499-1514, doi:10.1093/pcp/pcq111.
77. Laohavisit, A., Shang, Z., Rubio, L., Cuin, T. A., Véry,
A.-A., Wang, A., Mortimer, J. C., Macpherson, N., Cox-
on, K. M., Battey, N. H., Brownlee, C., Park, O. K., Sen-
tenac, H., Shabala, S., Webb, A. A. R., and Davies, J. M.
(2012) Arabidopsis Annexin1 mediates the radical-activat-
ed plasma membrane Ca
2+
- and K
+
-permeable conduc-
tance in root cells, Plant Cell, 24, 1522-1533, doi:10.1105/
tpc.112.097881.
78. Lichocka, M., Rymaszewski, W., Morgiewicz, K., Barymow-
Filoniuk, I., Chlebowski, A., Sobczak, M., Samuel, M.A.,
Schmelzer, E., Krzymowska, M., and Hennig, J. (2018)
Nucleus- and plastid-targeted annexin5 promotes repro-
ductive development in Arabidopsis and is essential for
pollen and embryo formation, BMC Plant Biol., 18, 183,
doi:10.1186/s12870-018-1405-3.
79. Zhu, J., Wu, X., Yuan, S., Qian, D., Nan, Q., An, L., and
Xiang, Y. (2014) Annexin5 plays a vital role in Arabidop-
sis pollen development via Ca
2+
-dependent membrane
trafficking, PLoS One, 9, e102407, doi: 10.1371/journal.
pone.0102407.
80. Yadav, D., Ahmed, I., Shukla, P., Boyidi, P., and Kir-
ti,P. (2016) Overexpression of Arabidopsis AnnAt8 alle-
viates abiotic stress in transgenic Arabidopsis and tobacco,
Plants, 5, 18, doi:10.3390/plants5020018.
81. Evans, M. J., Choi, W.-G., Gilroy, S., and Morris, R.J.
(2016) A ROS-assisted calcium wave dependent on the
AtRBOHD NADPH oxidase and TPC1 cation channel
propagates the systemic response to salt stress, Plant Physi-
ol., 171, 1771-1784, doi:10.1104/pp.16.00215.
82. Yamanaka, T., Nakagawa, Y., Mori, K., Nakano, M.,
Imamura, T., Kataoka, H., Terashima, A., Iida, K., Ko-
jima, I., Katagiri, T., Shinozaki, K., and Iida, H. (2010)
MCA1 and MCA2 that mediate Ca
2+
uptake have distinct
and overlapping roles in Arabidopsis, Plant Physiol., 152,
1284-1296, doi:10.1104/pp.109.147371.
83. Hattori, T., Otomi, Y., Nakajima, Y., Soga, K., Waka-
bayashi, K., Iida, H., and Hoson, T. (2020) MCA1 and
MCA2 are involved in the response to hypergravity in
Arabidopsis hypocotyls, Plants, 9, 590, doi: 10.3390/
plants9050590.
84. Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C.,
Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B.,
Johnson, D.M., Swift, G.B., He, Y., Siedow, J.N., and
Pei, Z.-M. (2014) OSCA1 mediates osmotic-stress-evoked
Ca
2+
increases vital for osmosensing in Arabidopsis,
Nature, 514, 367-371, doi:10.1038/nature13593.
85. Thor, K., Jiang, S., Michard, E., George, J., Scherzer, S.,
Huang, S., Dindas, J., Derbyshire, P., Leitão, N., DeFal-
co, T. A., Köster, P., Hunter, K., Kimura, S., Gronnier, J.,
Stransfeld, L., Kadota, Y., Bücherl, C. A., Charpenti-
er, M., Wrzaczek, M., MacLean, D., Oldroyd, G. E. D.,
Menke, F. L. H., Roelfsema, M. R. G., Hedrich, R., Fei-
jó, J., and Zipfel, C. (2020) The calcium-permeable chan-
nel OSCA1.3 regulates plant stomatal immunity, Nature,
585, 569-573, doi:10.1038/s41586-020-2702-1.
86. Fang, X., Liu, B., Shao, Q., Huang, X., Li, J., Luan, S.,
and He, K. (2021) AtPiezo plays an important role in
root cap mechanotransduction, Int.J. Mol. Sci., 22, 467,
doi:10.3390/ijms22010467.
87. Radin, I., Richardson, R. A., Coomey, J. H., Weiner,
E.R., Bascom, C.S., Li, T., Bezanilla, M., and Haswell,
E. S. (2021) Plant PIEZO homologs modulate vacuole
morphology during tip growth, Science, 373, 586-590,
doi:10.1126/science.abe6310.
88. Tran, D., Galletti, R., Neumann, E. D., Dubois, A., Sharif-
Naeini, R., Geitmann, A., Frachisse, J.-M., Hamant,O.,
and Ingram, G.C. (2017) A mechanosensitive Ca
2+
channel
activity is dependent on the developmental regulator DEK1,
Nat. Commun., 8, 1009, doi:10.1038/s41467-017-00878-w.
89. Lee, C. P., Maksaev, G., Jensen, G. S., Murcha, M.W.,
Wilson, M.E., Fricker, M., Hell, R., Haswell, E.S., Mil-
lar, A.H., and Sweetlove, L.J. (2016) MSL1 is a mech-
anosensitive ion channel that dissipates mitochondrial
membrane potential and maintains redox homeostasis in
mitochondria during abiotic stress, PlantJ., 88, 809-825,
doi:10.1111/tpj.13301.
90. Hamilton, E. S., Schlegel, A. M., and Haswell, E. S.
(2015) United in diversity: mechanosensitive ion channels
in plants, Annu. Rev. Plant Biol., 66, 113-137, doi:10.1146/
annurev-arplant-043014-114700.
91. Hamilton, E. S., Jensen, G. S., Maksaev, G., Katims, A.,
Sherp, A.M., and Haswell, E.S. (2015) Mechanosensi-
tive channel MSL8 regulates osmotic forces during pol-
len hydration and germination, Science, 350, 438-441,
doi:10.1126/science.aac6014.
92. Haswell, E. S., Peyronnet, R., Barbier-Brygoo, H., Meye-
rowitz, E.M., and Frachisse, J.-M. (2008) Two MscS ho-
mologs provide mechanosensitive channel activities in the
Arabidopsis root, Curr. Biol., 18, 730-734, doi: 10.1016/
j.cub.2008.04.039.
93. Moe-Lange, J., Gappel, N. M., Machado, M., Wudick,
M. M., Sies, C. S. A., Schott-Verdugo, S. N., Bonus,
M., Mishra, S., Hartwig, T., Bezrutczyk, M., Basu, D.,
Farmer, E. E., Gohlke, H., Malkovskiy, A., Haswell, E.
S., Lercher, M. J., Ehrhardt, D. W., Frommer, W. B., and
Kleist, T. J. (2021) Interdependence of a mechanosen-
sitive anion channel and glutamate receptors in distal
wound signaling, Sci. Adv., 7, eabg4298, doi: 10.1126/
sciadv.abg4298.
94. Tran, D., Girault, T., Guichard, M., Thomine, S., Leblanc-
Fournier, N., Moulia, B., De Langre, E., Allain, J.-M.,
and Frachisse, J.-M. (2021) Cellular transduction of me-
chanical oscillations in plants by the plasma-membrane
mechanosensitive channel MSL10, Proc. Natl. Acad. Sci.
USA, 118, e1919402118, doi:10.1073/pnas.1919402118.
95. Guerringue, Y., Thomine, S., and Frachisse, J.-M. (2018)
Sensing and transducing forces in plants with MSL10 and