FLUORESCENCE OF Chara CELLS UPON HYPERPOLARIZATION 1465
BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
In conclusion, this study revealed new interactions
between the plasma membrane and chloroplasts, which
are mediated by ion fluxes mobilized due to the elec-
trical cell signaling. Hyperpolarization of the plasma-
lemma in the K
+
-conductive state leads to noticeable
changes in F′ and F
m
′ of Chl fluorescence pointing to
the existence of regulatory mechanisms that differ from
previously discovered pathways triggered by the AP gen-
eration. Our experimental observations are consistent
with the notion that the K
+
/H
+
exchange on the inner
envelope membrane has a regulatory impact not only in
the long-term experiments (e.g., in plants grown at el-
evated salinity), but also in the case of relatively short-
term treatments. Further studies are needed for deeper
understanding of the intracellular interactions underly-
ing the effect of electrical events at the plasmalemma on
the photosynthetic performance of chloroplasts.
Contributions. A.A.B. designed the study, conduct-
ed experiments, and wrote the draft manuscript; S.YuSh.
carried out experiments and processed raw data; A.V.A.
discussed the results and supervised the study.
Funding. This work was supported by the Rus-
sian Foundation for Basic Research (RFBR) (project
no.20-54-12015NNIO_a) and carried out as part of the
Scientific Project of the State Order of the Government
of the Russian Federation to the Lomonosov Moscow
State University (no.121032500058-7).
Ethics declarations. The authors declare no con-
flict of interest. This article does not contain descrip-
tion of studies with human participants or animals per-
formed by any of the authors.
REFERENCES
1. Drachev, L. A., Mamedov, M. D., and Semenov, A.Yu.
(1987) The antimycin-sensitive electrogenesis in Rho-
dopseudomonas sphaeroides chromatophores, FEBS Lett.,
213, 128-132, doi:10.1016/0014-5793(87)81477-1.
2. Bulychev, A. A., Dassen, J. H. A., Vredenberg, W. J.,
Opanasenko, V. K., and Semenova, G.A. (1998) Stim-
ulation of photocurrent in chloroplasts related to light-
induced swelling of thylakoid system, Bioelectrochem. Bio-
energ., 46, 71-78, doi:10.1016/S0302-4598(98)00129-9.
3. Bulychev, A. A., and Vredenberg, W. J. (1999) Light-trig-
gered electrical events in the thylakoid membrane
of plant chloroplasts, Physiol. Plant., 105, 577-584,
doi:10.1034/j.1399-3054.1999.105325.x.
4. Bulychev, A. A., and Kamzolkina, N. A. (2006) Differ-
ential effects of plasma membrane electric excitation on
H
+
fluxes and photosynthesis in characean cells, Bio-
electrochemistry, 69, 209-215, doi: 10.1016/j.bioelechem.
2006.03.001.
5. Bulychev, A. A., and Kamzolkina, N. A. (2006) Effect
of action potential on photosynthesis and spatially dis-
tributed H
+
fluxes in cells and chloroplasts of Chara
corallina, Russ. J. Plant Physiol., 53, 1-9, doi: 10.1134/
S1021443706010018.
6. Bulychev, A. A., and Alova, A. V. (2022) Microfluidic
interactions involved in chloroplast responses to plasma
membrane excitation in Chara, Plant Physiol. Biochem.,
183, 111-119, doi:10.1016/j.plaphy.2022.05.005.
7. Johnson, C. H., Shingles, R., and Ettinger, W. F. (2007)
Regulation and role of calcium fluxes in the chloroplast,
in Structure and Function of Plastids (Wise, R. R., and
Hoober, J. K., eds.) Springer, Dordrecht, pp. 403-416,
doi:10.1007/978-1-4020-4061-0_20.
8. Hochmal, A. K., Schulze, S., Trompelt, K., and Hippler,
M. (2015) Calcium-dependent regulation of photosyn-
thesis, Biochim. Biophys. Acta Bioenerg., 1847, 993-1003,
doi:10.1016/j.bbabio.2015.02.010.
9. Williamson, R. E., and Ashley, C. C. (1982) Free Ca
2+
and cytoplasmic streaming in the alga Chara, Nature,
296, 647-651, doi:10.1038/296647a0.
10. Kreimer, G., Melkonian, M., and Latzko, E. (1985)
An electrogenic uniport mediates light-dependent Ca
2+
influx into intact spinach chloroplasts, FEBS Lett.,
180, 253-258, doi:10.1016/0014-5793(85)81081-4.
11. Stael, S., Wurzinger, B., Mair, A. N., Mehlmer, N.,
Vothknecht, U.C., and Teige, M. (2012) Plant organel-
lar calcium signalling: an emerging field, J.Exp. Bot., 63,
1525-1542, doi:10.1093/jxb/err394.
12. Krupenina, N. A., and Bulychev, A. A. (2007) Action
potential in a plant cell lowers the light requirement for
non-photochemical energy-dependent quenching of chlo-
rophyll fluorescence, Biochim. Biophys. Acta Bioenerg.,
1767, 781-788, doi:10.1016/j.bbabio.2007.01.004.
13. Pottosin, I., and Shabala, S. (2016) Transport across chlo-
roplast membranes: optimizing photosynthesis for ad-
verse environmental conditions, Mol. Plant, 9, 356-370,
doi:10.1016/j.molp.2015.10.006.
14. Szabò, I., and Spetea, C. (2017) Impact of the ion trans-
portome of chloroplasts on the optimization of photosyn-
thesis, J.Exp. Bot., 68, 3115-3128, doi:10.1093/jxb/erx063.
15. Höhner, R., Aboukila, A., Kunz, H. H., and Venema,
K. (2016) Proton gradients and proton-dependent trans-
port processes in the chloroplast, Front. Plant Sci., 7,
1-7, doi:10.3389/fpls.2016.00218.
16. Wu, W., and Berkowitz, G. A. (1992) Stromal pH and
photosynthesis are affected by electroneutral K
+
and H
+
exchange through chloroplast envelope ion channels,
Plant Physiol., 98, 666-672, doi:10.1104/pp.98.2.666.
17. Kishimoto, U. (1966) Hyperpolarizing response in Nitella
internodes, Plant Cell Physiol., 7, 429-439, doi:10.1093/
oxfordjournals.pcp.a079194.
18. Homblé, F. (1987) A tight-seal whole cell study of the volt-
age-dependent gating mechanism of K
+
-channels of pro-
toplasmic droplets of Chara corallina, Plant Physiol., 84,
433-437, doi:10.1104/pp.84.2.433.
19. Schmölzer, P. M., Höftberger, M., and Foissner, I. (2011)
Plasma membrane domains participate in pH banding