TIKHONOV1450
BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
transducing membranes, Chem. Rev., 121, 2020-2108,
doi: 10.1021/acs.chemrev.0c00712.
17. Sarewicz, M., Szwalec, M., Pintscher, S., Indyka, P.,
Rawski, M., Pietras, R., Mielecki, B., Koziej, Ł., Jaci-
uk,M., Glatt, S., and Osyczka, A. (2023) High-resolution
cryo-EM structures of plant cytochromeb
6
f at work, Sci.
Adv., 9, 1-12, doi:10.1126/sciadv.add9688.
18. Staehelin, L. A. (2003) Chloroplast structure: from
chlorophyll granules to supramolecular architecture of
thylakoid membranes, Photosynth. Res., 76, 185-196,
doi:10.1023/A:1024994525586.
19. Albertsson, P.-Å. (2001) A quantitative model of the
domain structure of the photosynthetic membrane,
Trends Plant Sci., 6, 349-354, doi: 10.1016/S1360-1385
(01)02021-0.
20. Dekker, J. P., and Boekema, E. J. (2005) Supramolecu-
lar organization of thylakoid membrane proteins in green
plants, Biochim. Biophys. Acta, 1706, 12-39, doi:10.1016/
j.bbabio.2004.09.009.
21. Pribil, M., Labs, M., and Leister, D. (2014) Structure and
dynamics of thylakoids in land plants, Environ. Bot., 65,
1955-1972, doi:10.1093/jxb/eru090.
22. Kramer, D. M., Avenson, T. J., and Edwards, G. E.
(2004) Dynamic flexibility in the light reactions of pho-
tosynthesis governed by both electron and proton trans-
fer reactions, Trends Plant. Sci., 9, 349-357, doi:10.1016/
j.tplants.2004.05.001.
23. Johnson, M. P., and Ruban, A. V. (2014) Rethinking the
existence of a steady-state Δψ component of the pro-
ton motive force across plant thylakoid membranes,
Photosynth. Res., 119, 233-242, doi: 10.1007/s11120-
013-9817-2.
24. Bendall, D. S., and Manasse, R. S. (1995) Cyclic photo-
phosphorylation and electron transport, Biochim. Biophys.
Acta, 1229, 23-38, doi:10.1016/0005-2728(94)00195-B.
25. Joliot, P., and Joliot, A. (2006) Cyclic electron flow
in C3 plants, Biochim. Biophys. Acta, 1757, 362-368,
doi:10.1016/j.bbabio.2006.02.018.
26. Joliot, P., Sellés, J., Wollman, F.-A., and Verméglio,A.
(2022) High efficient cyclic electron flow and function-
al supercomplexes in Chlamydomonas cells, Biochim.
Biophys. Acta Bioenerg., 1863, 148909, doi: 10.1016/
j.bbabio.2022.148909.
27. Iwai, M., Takizawa, K., Tokutsu, R., Okamuro, A., Taka-
hashi, Y., and Minagawa, J. (2010) Isolation of the elusive
supercomplex that drives cyclic electron flow in photosyn-
thesis, Nature, 464, 1210-1213, doi:10.1038/nature08885.
28. Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasa-
ka, M., and Shikanai, T. (2002) PGR5 is involved in cy-
clic electron flow around photosystemI and is essential
for photoprotection in Arabidopsis, Cell, 110, 361-371,
doi:10.1016/S0092-8674(02)00867-X.
29. DalCorso, G., Pesaresi, P., Masiero, S., Aseeva, E.,
Schünemann, D., Finazzi, G., Joliot, P., Barbato, R.,
and Leister, D. (2008) A complex containing PGRL1
and PGR5 is involved in the switch between linear and
cyclic electron flow in Arabidopsis, Cell
, 132, 273-285,
doi:10.1016/j.cell.2007.12.028.
30. Buchert, F., Mosebach, L., Gäbelein, P., and Hippler, M.
(2020) PGR5 is required for efficient Qcycle in the cy-
tochrome b
6
f complex during cyclic electron flow, Bio-
chem.J., 477, 1631-1650, doi:10.1042/BCJ20190914.
31. Strand, D. D., Fisher, N., and Kramer, D. M. (2016)
Distinct energetics and regulatory functions of the two
major cyclic electron flow pathways in chloroplasts, in
Chloroplasts: Current Research and Future Trends (Kirch-
hoff, H., ed.) Norfolk, UK, Caister Academic Press,
pp.89-100, doi:10.21775/9781910190470.04.
32. Shikanai, T. (2016) Chloroplast NDH: A different enzyme
with a structure similar to that of respiratory NADH de-
hydrogenase, Biochim. Biophys. Acta, 1857, 1015-1022,
doi:10.1016/j.bbabio.2015.10.013.
33. Laughlin, T. G., Bayne, A. N., Trempe, J. F., Savage,
D.F., and Davies, K.M. (2019) Structure of the complex
I-like molecule NDH of oxygenic photosynthesis, Nature,
566, 411-414, doi:10.1038/s41586-019-0921-0.
34. Schuller, J. M., Birrell, J.A., Tanaka, H., Konuma, T.,
Wulfhorst, H., Cox, N., Schuller, S. K., Thiemann, J.,
Lubitz, W., Sétif, P., Ikegami, T., Engel, B.D., Kurisu,G.,
and Nowaczyk, M. M. (2019) Structural adaptations of
photosynthetic complex I enable ferredoxin-dependent
electron transfer, Science, 363, 257-260, doi: 10.1126/
science.aau3613.
35. Zhang, C., Shuai, J., Ran, Z., Zhao, J., Wu, Z., Liao, R.,
Wu, J., Ma, W., and Lei, M. (2020) Structural insights into
NDH-1 mediated cyclic electron transfer, Nat. Commun.,
11, 888, doi:10.1038/s41467-020-14732-z.
36. Stiehl, H. H., and Witt, H. T. (1969) Quantitative treat-
ment of the function of plastoquinone in photosyn-
thesis, Z. Naturforsch. B, 24, 1588-1598, doi: 10.1515/
znb-1969-1219.
37. Haehnel, W. (1976) Thereduction kinetics chlorophylla
I
as indicator for proton uptake between the light reactions
in chloroplasts, Biochim. Biophys. Acta, 440, 506-521,
doi:10.1016/0005-2728(76)90038-4.
38. Tikhonov, A. N., Khomutov, G. B., and Ruuge, E. K.
(1984) Electron transport control in chloroplasts. Effects
of magnesium ions on the electron flow between two pho-
tosystems, Photobiochem. Photobiophys., 8, 261-269.
39. Haehnel, W. (1984) Photosynthetic electron transport
in higher plants, Annu. Rev. Plant Physiol., 35, 659-693,
doi:10.1146/annurev.pp.35.060184.003303.
40. Höhner, R., Pribil, M., Herbstová, M., Lopez, L. S.,
Kunz, H.-H., Li, M., Wood, M., Svoboda, M., Puthi-
yaveetil, S., Leister, L., and Kirchhoff, H. (2020) Plas-
tocyanin is the long-range electron carrier between pho-
tosystem II and photosystem I in plants, Proc. Natl.
Acad. Sci. USA, 117, 15354-15362, doi: 10.1073/pnas.
2005832117.
41. Tikhonov, A. N. (2013) pH-Dependent regulation of elec-
tron transport and ATP synthesis in chloroplasts, Photo-
synth. Res., 116, 511-534, doi:10.1007/s11120-013-9845-y.