VITUKHNOVSKAYA et al.1436
BIOCHEMISTRY (Moscow) Vol. 88 No. 10 2023
14. Drachev, L. A., Mamedov, M. D., and Semenov, A. Y.
(1987) The antimycin-sensitive electrogenesis in Rhodo-
bacter sphaeroides chromatophores, FEBS Lett., 213,
128-132, doi:10.1016/0014-5793(87)81477-1.
15. Seibert, M., and Kendall-Tobais, M. W. (1982) Pho-
toelectrochemical properties of electrodes coated with
photoactive-membrane visicles isolated from photosyn-
thetic bacteria, Biochim. Biophys. Acta, 681, 504-511,
doi: 10.1016/0005-2728(82)90193-1.
16. Hara, M., Ajiki, S., and Miyake, J. (1998) Topological
characterization and immobilization of a chromatophore
membrane from Rhodopseudomonas viridis for appli-
cation as a photoelectrical device, Science, 5, 717-721,
doi: 10.1016/S0968-5677(98)00111-4.
17. Magis, G. J., Hollander, M.-J., Onderwaater, W. G.,
Olsen, J.D., Hunter, C.N., etal. (2010) Light harvest-
ing, energy transfer and electron cycling of a native pho-
tosynthetic membrane adsorbed onto a gold surface,
Biochim. Biophys. Acta, 1798, 637-645, doi: 10.1016/
j.bbamem.2009.12.018.
18. Woronowicz, K., Ahmed, S., Biradar, A. A., Biradar,
A.V., Birnie, D.P., etal. (2012) Near-IR absorbing so-
lar cell sensitized with bacterial photosynthetic mem-
branes, Photochem. Photobiol., 88, 1467-1472, doi: 10.1111 /
j.1751-1097.2012.01190.x.
19. Harrold, J. W., Woronowicz, K., Lamptey, J., Baird, J.,
Moshar, A., etal. (2013) Functional interfacing of Rho-
dospirillum rubrum chromatophores to a conducting sup-
port for capture and conversion of solar energy, J. Phys.
Chem.B, 117, 11249-11259, doi: 10.1021/jp402108s.
20. Vitukhnovskaya, L. A., Zaspa, A. A., Semenov, A. Yu.,
and Mamedov, M.D. (2023) Conversion of light into elec-
tricity in a semi-synthetic system based on photosynthetic
bacterial chromatophores, Biochim. Biophys. Acta Bioen-
erg., 1864, 148975, doi: 10.1016/j.bbabio.2023.148975.
21. Ormerod, J. G., Ormerod, K. S., and Gest, H. (1961)
Light-dependent utilization of organic compounds and
photoproduction of molecular hydrogen by photosyn-
thetic bacteria; Relationships with nitrogen metabo-
lism, Arch. Biochem. Biophys., 94, 449-463, doi: 10.1016/
0003-9861(61)90073-x.
22. Woronowicz, K., Sha, D., Frese, R. N., and Niederman,
R. A. (2011) The accumulation of the light-harvesting
2complex during remodeling of the Rhodobacter sphaeroi-
des intracytoplasmic membrane results in a slowing of the
electron transfer turnover rate of photochemical reac-
tion centers, Biochemistry, 50, 4819-4829, doi: 10.1021/
bi101667e.
23. Clayton, R. K. (1966) Spectroscopic analysis of bacteri-
ochlorophylls invitro and invivo, Photochem. Photobiol.,
5, 669-677, doi: 10.1111/j.1751-1097.1966.tb05813.x.
24. Garcia, A. F., Venturoli, G., Gad’on, N., Fernandez-
Velasco, J. G., Melandri, B. A., and Drews, G. (1987)
Theadaptation of the electron transfer of Rhodopseudomo-
nas capsulata to different light intensities, Biochim. Biophys.
Acta, 890, 335-345, doi: 10.1016/0005-2728(87)90161-7.
25. Dutton, P. L., Petty, K. M., Bonner, H. S., and Morse,
S.D. (1975) Cytochrome c
2
and reaction center of Rho-
dopseudomonas sphaeroides Ga. membranes. Extinction
coefficients, content, half-reduction potentials, kinetics
and electric field alterations, Biochim. Biophys. Acta, 387,
536-556, doi: 10.1016/0005-2728(75)90092-4.
26. Altamura, E., Albanese, P., Marotta, R., Milano, F.,
Fiore, M., etal. (2021) Chromatophores efficiently pro-
mote light-driven ATP synthesis and DNA transcription
inside hybrid multicompartment artificial cells, Proc.
Natl. Acad. Sci. USA, 118, e2012170118, doi: 10.1073/
pnas.2012170118.
27. Palazzo, G., Mallardi, A., Giustini, M., Monica, M.D.,
and Venturoli, G. (2000) Interactions of photosynthetic
reaction center with 2,3-dimethoxy-5-methyl-1,4-benzo-
quinone in reverse micelles, Phys. Chem. Chem. Phys., 20,
4624-4629, doi: 10.1039/b003905p.
28. Friebe, V. M., Swainsbury, D. J. K., Fyfe, P. K., Heijden,
W.V.D., Jones, M.R., and Frese, R.N. (2016) On the
mechanism of ubiquinone mediated photocurrent gener-
ation by a reaction center based photocathode, Biochim.
Biophys. Acta Bioenerg., 1857, 1925-1934, doi: 10.1016/
j.bbabio.2016.09.011.
29. Yaghoubi, H., Li, Z., Jun, D., Saer, R., and Slota, J.E.
(2012) The role of gold-adsorbed photosynthetic reaction
centers and redox mediators in the charge transfer and
photocurrent generation in a bio-photoelectrochemical
cell, J. Phys. Chem. C, 116, 24868-24877, doi: 10.1021/
jp306798p.
30. Zdarta, J., Meyer, A. S., Jesionowski, T., and Pinelo, M.
(2018) A general overview of support materials for enzyme
immobilization. Characteristics, properties, practical utili-
ty, Catalysts, 8, 92, doi: 10.3390/catal8020092.
31. Imam, H. T., Marr, P. C., and Marr, A. C. (2021) Enzyme
entrapment, biocatalyst immobilization without covalent
attachment, Green Chem., 23, 4980-5005, doi: 10.1039/
D1GC01852C.
32. Grattieri, M., Rhodes, Z., Hickey, D. P., Beaver, K., and
Minteer, S. D. (2019) Understanding biophotocurrent
generation in photosynthetic purple bacteria, ACS Catal.,
9, 867-873, doi: 10.1021/acscatal.8b04464.
33. Zaspa, A. A., Vitukhnovskaya, L. A., Mamedova, A. M.,
Semenov, A.Y., and Mamedov, M.D. (2020) Photovolt-
age generation by photosystemII core complexes immo-
bilized onto a Millipore filter on an indium tin oxide elec-
trode, J.Bioenerg. Biomembr., 52, 495-504, doi: 10.1007/
s10863-020-09857-1.
34. Zaspa, A., Vitukhnovskaya, L., Mamedova, A., Allakh-
verdiev, S.I., Semenov, A., and Mamedov, M.D. (2022)
Voltage generation by photosystemI complexes immobi-
lized onto a millipore filter under continuous illumination,
Int. J. Hydrogen Energy, 47, 11528-11538, doi: 10.1016/
j.ijhydene.2022.01.175.
35. Jackson, J. B., and Crofts, A. R. (1971) The kinetics of
light induced carotenoid changes in rhodopseudomonas
spheroides and their relation to electrical field generation