
AGING: PROGRAM, WEAR AND TEAR, OR DYSREGULATION? 79
BIOCHEMISTRY (Moscow) Vol. 91 No. 1 2026
English, B. W., et al. (2024) Disagreement of foundation principles of biological aging, PNAS Nexus, 3, pgae499,
https://doi.org/10.1093/pnasnexus/pgae499.
2. Izmailov, D. M., and Obukhova, L. K. (1996) Geroprotector efficiency depends on viability of control popula-
tion: life span investigation in D. melanogaster, Mech. Ageing Dev., 91, 155-164, https://doi.org/10.1016/s0047-
6374(96)01776-9.
3. Orr, W.C., and Sohal, R.S. (2003) Does overexpression of Cu,Zn-SOD extend life span in Drosophila melanogaster?
Exp. Gerontol., 38, 227-230, https://doi.org/10.1016/s0531-5565(02)00263-2.
4. Olovnikov, A. M. (2003) The redusome hypothesis of aging and the control of biological time during individual
development, Biochemistry (Moscow), 68, 2-33, https://doi.org/10.1023/a:1022185100035.
5. Khalyavkin, A. V., and Krut’ko, V. N. (2015) Early thymus evolution – manifestation of an aging program or a
program of development? Biochemistry (Moscow), 80, 1622-1625, https://doi.org/10.1134/S0006297915120111.
6. Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., and De Benedictis, G. (2000) In-
flamm-aging. An evolutionary perspective on immunosenescence, Ann. N. Y. Acad. Sci., 908, 244-254, https://
doi.org/10.1111/j.1749-6632.2000.tb06651.x.
7. Franck, M., Tanner, K. T., Tennyson, R. L., Daunizeau, C., Ferrucci, L., Bandinelli, S., Trumble, B. C., Kaplan, H. S.,
Aronoff, J. E., Stieglitz, J., Kraft, T. S., Lea, A. J., Venkataraman, V. V., Wallace, I. J., Lim, Y. A. L., Ng, K. S., Yeong,
J. P. S., Ho, R., Lim, X., et al. (2025) Nonuniversality of inflammaging across human populations, Nat. Aging, 5,
1471-1480, https://doi.org/10.1038/s43587-025-00888-0.
8. Khaliavkin, A.V. (2001) Influence of environment on the mortality pattern of potentially non-senescent organisms.
General approach and comparison with real populations, Adv. Gerontol., 7, 46-49.
9. Khalyavkin, A. V., and Yashin, A. I. (2006) Inadequate intensity of various components of total environmental
signals can lead to natural aging, Ann. N. Y. Acad. Sci., 1067, 45-46, https://doi.org/10.1196/annals.1354.007.
10. Khalyavkin, A.V. (2013) Phenoptosis as genetically determined aging influenced by signals from the environment,
Biochemistry (Moscow), 78, 1001-1005, https://doi.org/10.1134/S0006297913090058.
11. Khalyavkin, A. V., and Krut’ko, V. N. (2018) How regularities of mortality statistics explain why we age despite
having potentially ageless somatic stem cells, Biogerontology, 19, 101-108, https://doi.org/10.1007/s10522-017-
9728-2.
12. Ahlenius, H., Visan, V., Kokaia, M., Lindvall, O., and Kokaia, Z. (2009) Neural stem and progenitor cells retain
their potential for proliferation and differentiation into functional neurons despite lower number in aged brain,
J. Neurosci., 29, 4408-4419, https://doi.org/10.1523/JNEUROSCI.6003-08.2009.
13. Woods, D. S., and Tilly, J. L. (2013) An evolutionary perspective on adult female germline stem cell function
from fly to human, Semin. Reprod. Med., 31, 24-32, https://doi.org/10.1055/s-0032-1331794.
14. Rando, T. A., and Chang, H. Y. (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging
clock, Cell, 148, 46-57, https://doi.org/10.1016/j.cell.2012.01.003.
15. Kushima, K., Kamio, K., and Okuda, Y. (1961) Climacterium, climacteric disturbances and rejuvenation of sex
center, Tohoku J. Exp. Med., 74, 113-129, https://doi.org/10.1620/tjem.74.113.
16. Klotz, S., Danser, A. H. J., and Burkhoff, D. (2008) Impact of left ventricular assist device (LVAD) support on the
cardiac reverse remodeling process, Progr. Biophys. Mol. Biol., 97, 479-496, https://doi.org/10.1016/j.pbiomolbio.
2008.02.002.
17. Dandel, M., Weng, Y., Siniawski, H., Stepanenko, A., Krabatsch, T., Potapov, E., Lehmkuhl, H. B., Knosalla, C.,
and Hetzer, R. (2011) Heart failure reversal by ventricular unloading in patients with chronic cardiomyopa-
thy: criteria for weaning from ventricular assist devices, Eur. Heart J., 32, 1148-1160, https://doi.org/10.1093/
eurheartj/ehq353.
18. Khalyavkin, A. V., and Blokhin, A. V. (1994) Long-term limitation of cell proliferation in culture does not lead to
proliferative aging [in Russian], Tsitologiya, 36, 465-468.
19. Blokhin, A. V., and Khalyavkin, A. V. (1995) Influence of long-term limitation of cell proliferation on the cell
cycle duration, Cell Prolif., 28, 431-435, https://doi.org/10.1111/j.1365-2184.1995.tb00083.x.
20. Khokhlov, A. N. (2010) From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological
studies, Biophysics (Moscow), 55, 859-864.
21. Martinez, D. E. (1998) Mortality patterns suggest lack of the senescence in hydra, Exp. Gerontol., 33, 217-225,
https://doi.org/10.1016/s0531-5565(97)00113-7.
22. Yoshida, K., Fujisawa, T., Hwang, J. S., Ikeo, K., and Gojobori, T. (2006) Degeneration after sexual differentiation
in hydra and its relevance to the evolution of aging, Gene, 385, 64-70, https://doi.org/10.1016/j.gene.2006.06.031.
23. Khalyavkin, A. V., and Yashin, A. I. (2006) Aging as a result of unplanned drift of the parameters of the organ-
ism’s control systems, inevitable under inadequate conditions of functioning [in Russian], in Third International
Conference on Control Problems, Plenary Reports and Selected Works. ICS RAS, Moscow, pp. 430-435.