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Abstract— Quantitative analysis of gene transcription is widely used across various fields of biology and, in 

particular, in medicine, it serves as a tool for diagnostics and transcriptomic profiling of diseases. In recent 

years, transcriptome analysis methods based on large-scale next-generation sequencing have become widely 

adopted. Transcriptomic studies enable the identification of cellular processes that are active at specific time 

points, the investigation of transcriptome dynamics in different tissues or physiological states (such as during 

ontogenesis or adaptive responses) and the detection of differentially expressed genes in pathological con-

ditions. A pronounced change in the transcription level of one or more genes under pathological conditions 

may be sufficient for diagnosis, serving as a transcriptional biomarker of disease. However, in some cases, 

altered transcription levels may indicate the presence of mutations, including those leading to disruption of 

splicing, activation of mobile elements, or pseudogenes. This review discusses cases in which transcription-

al changes can provide insights into the genetic causes of disease, as well as the challenges that must be 

considered when using transcription as a diagnostic marker. In the future, specialized targeted panels based 

on transcriptome analysis are expected to be used not only as diagnostic and prognostic tools, but also as 

predictors of structural genomic abnormalities, thereby contributing to the development of novel strategies 

for effective disease treatment. 
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INTRODUCTION

Genetic disorders are caused by dysfunctions of 

the cellular genetic apparatus, often resulting from 

mutations in specific genes. To date, several thousand 

genes associated with more than 7500 monogenic 

inherited diseases  [1] have been described, and the 

Human Gene Mutation Database (HGMD) contains in-

formation on over 200,000 pathogenic gene variants 

(alleles)  [2]. Nevertheless, the causes of many diseas-

es (mainly polygenic and multifactorial ones) remain 

unclear.

A major obstacle in identifying the causes of 

polygenic diseases is the substantial genetic diversity 

of the human population. The 1000 Genomes Project 

revealed that individual genomes differ from the ref-

erence genome by approximately 4.1 to 5 million sin-

gle nucleotide polymorphisms (SNPs)  [3]. The dbSNP 

database (https://www.ncbi.nlm.nih.gov/snp/) contains 

information on over 25 million distinct SNPs, of which 

only about 300,000 are located in exons, while the 

others are found in non-coding DNA regions and are 

most likely functionally neutral. According to the Ex-

ome Aggregation Consortium (ExAC) Project, which 

provides data on exome sequences from over 60,000 

individuals, the SNPs’ majority of coding regions are 

also predicted to be functionally neutral [4]. However, 

in practice, predicting which of the identified genet-

ic variants are neutral and which may contribute to 

disease development is a complex task. Some neutral 
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Fig. 1. Environmental and molecular-genetic mechanisms that may influence gene transcription levels. Designations: LOF, 
loss-of-function; GOF, gain-of-function; NMD, nonsense-mediated mRNA decay; TF, transcription factor; ME, mobile element.

variants may exhibit pathogenicity only under certain 

conditions, including environmental influences and/or 

interactions with other genetic variants.

To identify associations between SNPs and poly-

genic diseases, researchers use methods based on 

linking candidate genetic variants with mutant phe-

notypes, including genome-wide association studies 

(GWAS) [5]. GWAS typically involve searching for cor-

relations between genotype variants (that is usually 

SNPs) and certain disease. This approach enables the 

estimation of disease risk (genetic predisposition) in 

individuals carrying specific gene variants (i.e., partic-

ular SNPs) compared to individuals who do not carry 

these variants.

On the other hand, gene dysfunction may result 

not from structural alterations in the gene itself, but 

from disruptions in its expression. Therefore, one ap-

proach to study mutant phenotypes involves analyz-

ing changes in the transcription of specific candidate 

genes or performing a global analysis of alterations at 

the transcriptome level. Transcription is an indicator 

of gene function that is difficult to interpret. First, it 

represents an initial (but not the only) stage in the 

regulation of gene expression. Following transcription, 

additional regulatory mechanisms become activated. 

Disruptions at any stage of gene expression regulation, 

not necessarily at the transcriptional level, can affect 

gene function and lead to phenotypic changes. Second, 

transcription is a complex multistep process that in-

volves both epigenetic regulation (chromatin remod-

eling, histone protein modifications, DNA methylation) 

and direct transcriptional regulation itself. The latter 

occurs through cis-regulatory gene sequences, such as 

enhancers, silencers, or insulators, as well as through 

trans-regulation by transcription factors (TFs). Third, 

transcription is significantly influenced by environ-

ment, which may include both external factors (abi-

otic or biotic) and internal ones (cell or tissue type, 

age, sex, and other physiological parameters) (Fig.  1).

Nevertheless, in some cases, transcription can 

serve as an informative indicator of specific struc-

tural alterations in the genome. Figure  1 shows the 

main molecular-genetic factors that may affect gene 

transcription levels: mutations, particularly those that 

alter splicing, as well as the transcriptional activity of 

mobile elements and pseudogenes.

To determine how gene transcription changes un-

der the influence of various genetic and non-genetic 

factors, large-scale transcriptome analysis is now com-

monly used. Transcriptomic studies (RNA sequencing, 

RNA-seq) enable to identify which cellular processes 

are active at the time of RNA extraction  [6]. One of 

the key advantages of RNA sequencing is its ability to 

reveal transcriptome dynamics across different tissues 

or states, such as during ontogenesis or physiological 

adaptation. It can also be used for comparative tran-

scriptome analysis of biomedical samples obtained 

from diseased and healthy tissues.
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The quality and predictive power of transcriptom-

ic studies are influenced by numerous factors, since 

transcription is a labile process that enables cells to 

rapidly adapt to external and internal, environmen-

tal or physiological changes. Some genes (for exam-

ple, housekeeping genes) are transcribed in a stable 

and condition-independent manner, showing minimal 

variation in transcription levels. Others are highly 

sensitive to environmental changes and exhibit sub-

stantial variability in transcription depending on the 

conditions.

A pronounced change in gene transcription levels 

under pathological conditions may be sufficient for 

diagnosis, serving as a transcriptional biomarker of 

disease. However, transcriptomic studies alone are 

not sufficient to fully understand the mechanisms 

underlying transcriptional alterations. In this context, 

combining genome-wide association studies (GWASs) 

with transcriptome-wide association studies (TWASs) 

has proven to be an effective approach  [7]. The first 

approach (GWAS) focuses on identifying associations 

between SNPs and pathological genotypes, while the 

second (TWAS) aims to detect associations between 

gene transcription levels and disease, as well as to 

search for gene networks whose function is disrupted 

in disease. In the following sections, we will examine 

in detail the circumstances under which transcription 

levels may be useful for elucidating the genetic basis 

of disease, and the factors that must be taken into 

account when using transcription as a diagnostic tool. 

We will also discuss the challenges that complicate the 

interpretation of transcriptomic data.

GENE TRANSCRIPTION AS A BIOMARKER 
OF GENETIC DISORDERS: OPPORTUNITIES

Transcription levels can serve as indicators 

of both loss-of-function (LOF) and gain-of-func-

tion (GOF) mutations. LOF mutations include: non-

sense-mediated mRNA decays (NMDs), which com-

pletely stop protein synthesis; missense mutations 

that negatively affect protein activity or stability; 

mutations in regulatory regions that impair gene ex-

pression [8]. Approximately one-third of mutant genes 

identified in monogenic and cancer-related disorders 

carry nonsense or frameshift mutations that result in 

the formation of premature termination codons  [9]. 

The decay of mRNAs containing nonsense mutations 

is a cellular process that eliminates mRNA transcripts 

carrying premature stop codons, thereby preventing 

the synthesis of truncated and potentially danger-

ous proteins  [10]. This mechanism ensures that only 

mRNAs capable of producing full-length proteins are 

translated. By reducing the levels of defective mRNAs, 

NMD decreases the expression of truncated proteins, 

some of which may exert dominant-negative effects, 

and results in the suppression of mutant allele tran-

scription.

It is known that approximately 10% of patients 

with cystic fibrosis are homozygous for a mutation in 

the CFTR gene that introduces a premature termina-

tion codon (PTC). At the same time, the mRNA levels 

of CFTR contain a nonsense mutation are significantly 

reduced compared to wild-type CFTR mRNA not only 

in homozygous patients but also in healthy hetero-

zygous carriers of the mutation [11]. It has been re-

vealed that CFTR mRNA levels in cell lines harboring 

various nonsense mutations (Y122X, G542X, R1162X, 

and W1282X) are decreased by 50-80% relative to 

wild-type CFTR mRNA levels in the parental cell lines 

[12-14]. Other examples of transcript reduction due to 

NMD mechanism involve the following genes: JAG1 (in 

Alagille syndrome), DYRK1A (in intellectual disability), 

and ZIC2 (in holoprosencephaly); the involvement of 

the above-mentioned genes in haploinsufficiency dis-

orders has been reported. To systematically investigate 

factors determining the efficiency of NMD in cancer, a 

database of somatic nonsense mutations in genes from 

9769 cancer patients was constructed and integrated 

with mRNA expression data from The Cancer Genome 

Atlas (TCGA) [15]. Thus, decreased gene transcript lev-

els may indicate the presence of nonsense mutations 

that affect transcription.

It is important to note that LOF mutations have 

different phenotypic consequences depending on 

whether a gene’s function is dose-dependent or dose- 

independent. Recessive LOF mutations are typically 

found in genes encoding metabolic enzymes, suggest-

ing that their function is not dependent on gene dos-

age. Genes with limited variability in transcript lev-

els are known as dosage-sensitive genes [16]. Genes 

encoding regulatory proteins, transcription factors, 

receptors, or their ligands are dosage-sensitive. LOF 

mutations in these genes are usually dominant, since 

a single functional allele expression performance is 

insufficient to maintain normal operation. Functions, 

provided by the housekeeping genes, are also dosage- 

sensitive, and LOF mutations in these genes are gen-

erally dominant [17, 18].

Gain-of-function (GOF) mutations can lead to var-

ious alterations at the protein level, such as consti-

tutive synthesis, substrate change, disruption of tar-

get-binding specificity, or protein aggregation [2]. All 

of the above make GOF mutations critically important 

in the development and progression of various cancer 

types. While most LOF mutations are localized within 

structured protein domains, GOF mutations are more 

frequently found in intrinsically disordered regions 

(IDRs) of proteins [19]. As a result, mutations in IDRs 

often disrupt molecular interactions and consequently 

affect signaling pathway function.
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More than 90% of all variants associated with 

genetic diseases have been shown to be located in 

non-coding regions of the genome [20]. However, mu-

tations in non-coding regions can affect gene func-

tion by disrupting the interaction between TFs and 

their binding sites in regulatory regions of genes [21]. 

As  a result, LOF mutation may occur due to the loss 

of a binding site, or GOF mutation may arise due to 

the emergence of a new binding site (Fig.  1).

In the study by Fuxman Bass et  al. [22], the au-

thors investigated the impact of point mutations in 

non-coding regions on transcription factor (TF) binding 

to enhancers using a yeast-based system: most of the 

mutations resulted in a loss of interaction, but sever-

al dozen led to enhanced binding. Another example 

demonstrating how mutations in non-coding regions 

can affect gene function is provided by mutations in 

the promoter of the telomerase reverse transcriptase 

(TERT) gene, which are frequently observed in vari-

ous types of cancer [23]. Two independent mutations 

in the TERT promoter were identified that generated 

de  novo consensus binding motifs for the ETS tran-

scription factor, leading to a 2-4-fold increase in the 

transcriptional activity of the gene [23].

Pathogenic GOF mutations in the STAT1 gene are 

typically associated with elevated levels of phosphor-

ylated STAT1 transcription factor, as well as increased 

transcription level of the gene itself. In the study by 

Zimmerman et al. [24], STAT1 mRNA levels were ana-

lyzed in blood cells from healthy donors and patients 

carrying GOF mutations in the STAT1 following in-

duction with interferons γ and α. The results showed 

that the median transcription levels of STAT1 were 

approximately three times higher in patients than in 

healthy donors.

Changes in transcriptional levels may indicate 

the presence of a mutation in an enhancer [25]. Most 

genes are regulated by more than one enhancer, and 

many enhancers control the transcription of multi-

ple genes [26,  27]. Systematic analyses have provided 

evidence for the emergence of new gene functions 

through enhancer “reprogramming” during evolution, 

which occurs via the acquisition of novel transcrip-

tion factor binding sites [28]. Super-enhancers are 

large clusters of enhancers, and disease-associated 

SNPs have been shown to be particularly enriched 

in super-enhancers of oncogenes in cancer cells [29]. 

For example, mutations in the super-enhancer of the 

TAL1 gene, which is associated with T cell acute lym-

phoblastic leukemia, result in the emergence of MYB 

transcription factor binding site, leading to TAL1 gene 

overexpression in the tumor [30].

Mutations in non-coding regions can also af-

fect gene expression by disrupting interactions with 

microRNAs. For example, a mutation in the non- 

coding region of the E2F1:MIR136-5p locus disrupts 

microRNA-mediated regulation, resulting in increased 

activity of the E2F1 oncogene in colorectal cancer [31]. 

The SomamiR  2.0 database (http://compbio.uthsc.edu/

SomamiR) contains data on somatic GOF mutations 

identified in cancer that potentially alter interactions 

between microRNAs and competing endogenous RNAs 

(ceRNAs), including mRNAs, circular RNAs (circRNAs), 

and long non-coding RNAs (lncRNAs) [32].

Thus, changes in gene transcription levels may 

indicate LOF or GOF mutations occurring not only 

within the coding sequences of these genes but also in 

regulatory regions, such as transcription factor bind-

ing sites or enhancers.

Transcription level as an indicator of muta-

tions contributing to splicing defects. Splicing-dis-

rupting mutations are a common cause of monogen-

ic diseases. It has been estimated that up to 60% of 

all pathogenic SNPs may lead to splicing defects [33]. 

Point mutations within exons can disrupt the function 

of exonic splicing enhancers (ESEs) or produce new 

exonic splicing silencers (ESSs). It has been found that 

approximately 10% of ~5000 known pathogenic mis-

sense variants result in exon skipping [34]. If exon 

skipping does not result in a frameshift, the transcript 

may be translated into protein, and the pathogenici-

ty of such an event is not always evident [35]. Con-

versely, a frameshift can provide to the formation of 

a stop codon, triggering NMD mechanism (Fig.  1).

Since splicing is highly tissue-specific [36], the tis-

sue selection for analysis is of critical importance in 

mutation detection. A mRNA of the same gene can be 

spliced differently across tissues. Age-related changes 

in splicing include alternative splicing of aging- related 

genes, as well as alterations in the expression levels 

of core spliceosome genes and splicing regulatory fac-

tors [37].

Transcription and splicing are closely intercon-

nected. Splicing provides feedback on transcription 

initiation, influencing the gene’s transcriptional pro-

file. A recently described phenomenon, exon-mediat-

ed activation of transcription starts (EMATS), demon-

strates that splicing of internal exons can regulate 

transcription initiation and activate cryptic promoters 

[38]. Genes containing EMATS have been shown to be 

linked to numerous genetic diseases (neurodevelop-

mental disorders, immunodeficiency, cancer, deafness, 

and others) [39]. Thus, transcription can be modulat-

ed via the efficiency of internal exon splicing, and 

changes in transcription levels may indicate splicing 

mutations (Fig.  1).

Transcription of mobile elements as a marker 

of genetic disorders. Mobile elements (MEs) are an 

essential component of the human genome, accounting 

for approximately half of its content, with the majority 

presented by retrotransposons [40]. ME transposition 

is a potentially deleterious operation that can lead 
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to genomic rearrangements. In addition, rearrange-

ments may also result from recombination process-

es between ME copies. Although many MEs have lost 

their transpositional activity over the course of evolu-

tion, individual copies of Alu, L1, SVA, and human en-

dogenous retroviruses (HERVs) remain transcriptional-

ly active, and some of these copies are still capable of 

transposition within the human genome [41].

Altered transcriptional profiles of mobile ele-

ments and their impact on nearby genes have been 

observed in various diseases, including cancer and 

neurodegenerative disorders [42]. Through their own 

promoters, MEs can either suppress or enhance the 

expression of neighboring genes (Fig.  1). For exam-

ple, in Hodgkin’s lymphoma, transcription of the pro-

to-oncogene CSF1R is initiated from the long terminal 

repeat (LTR) of a THE1B element, a member of the 

MaLR LTR-retrotransposon family [43]. Activation of 

THE1B transcription may serve as a potential diagnos-

tic and/or prognostic marker for Hodgkin’s lymphoma.

The RNA sequencing data from The Cancer Ge-

nome Atlas (http://cancergenome.nih.gov/) have been 

used to quantitatively assess ME expression in col-

orectal cancer. As a result, ME expression was shown 

to function as a prognostic marker for patients with 

colorectal cancer [44].

Many human epithelial cancers, especially those 

associated with TP53 mutations, are characterized by 

elevated expression of L1 [45,  46]. Increased L1 ex-

pression has been reported in ovarian, esophageal, 

colorectal, lung, breast, and pancreatic cancers, and 

it correlates with disease severity [47,  48]. The data 

evidence that L1 expression analysis can be applied 

as a prognostic tool.

Approximately 80% of all long non-coding RNAs 

(lncRNAs) in the human transcriptome contain MEs’ 

sequences [49]. Evidence suggests that ME-derived 

lncRNAs are involved in melanoma progression 

[50], contribute to tumor progression, metastasis, or 

chemoresistance in breast cancer [51], pancreatic can-

cer, and hepatocellular carcinoma [52].

The examples described above demonstrate that 

the analysis of transcriptional activity of MEs can 

use as a diagnostic and prognostic marker for var-

ious cancers. Moreover, MEs are also markers of 

age-related changes. In humans, HERV-K (HML-2) and 

HERV-W provide differential expression patterns in 

young and elderly individuals [53]. The expression 

of HERV-H and HERV-W has been shown to correlate 

significantly with age [54]. In particular, HERV-W ex-

pression markedly increases in individuals over the 

age of 40 years, that is a range that coincides with 

the development of neurodegenerative diseases, such 

as multiple sclerosis. Data about ME transcription 

levels may also facilitate a diagnosis of inflammatory 

brain disorders [55]. Several studies have shown that 

HERV-H, HERV-K, HERV-L, and HERV-W are activated 

in Alzheimer’s disease [56]. Moreover, HERV-H expres-

sion is significantly elevated in patients with autism 

spectrum disorders (ASD), particularly in individuals 

with severe disease progression [57]. Thus, analysis 

of HERV-H transcription levels may provide a prom-

ising marker for ASD diagnosis; however, the authors 

emphasize that additional studies on larger patient 

sampling are required to confirm this hypothesis.

Thus, the overall level of ME transcriptional activ-

ity contributes to biodiagnostic management of many 

genetic disorders, especially cancers. Since ME tran-

scription is strictly regulated by the host genome, dis-

ruptions in genome function are estimated to underlie 

the changes in ME expression levels. However very 

few studies have been carried out to date.

Pseudogene transcription as a marker of ge-

netic disorders. Pseudogenes were historically con-

sidered merely nonfunctional copies of protein-cod-

ing genes that had lost their protein-coding capacity 

due to the accumulation of deleterious mutations. 

However, while the majority of human pseudogenes 

are indeed nonfunctional, approximately 20% exhibit 

transcriptional activity, and some are even capable of 

producing protein products [58]. With the advent of 

high-throughput sequencing technologies, thousands 

of pseudogenes have been identified and implicated 

in the etiology and pathogenesis of various diseases. 

Increasing evidence suggests that pseudogenes are 

integral components of the complex regulatory net-

works that control gene expression [59].

Some pseudogenes contribute to the regulation 

of gene expression and therefore should be consid-

ered as “functional” genes (Fig.  1). Recent studies have 

demonstrated that pseudogene RNAs can enhance 

the transcription of their parental genes by compet-

ing for binding with regulatory microRNAs, thereby 

alleviating microRNA-mediated repression of target 

genes  [60].

Most pseudogenes are co-expressed with their 

parental genes, and their expression is critical for 

the function of the parental genes. For example, loss 

of PTENP1 function, a processed pseudogene of the 

phosphatase and tensin homolog gene (PTEN), can 

lead to a significant decrease in PTEN transcription 

levels [61]. It has been shown that both PTEN and 

PTENP1 can be deleted in melanoma [62], indicating 

that the functions of both the parental gene and its 

pseudogene are necessary under normal conditions.

Conversely, some pseudogenes exhibit ex-

pression patterns that differ entirely from those 

of their parental genes. A systematic analysis of 

pseudogene transcription revealed that pseudogenes 

are transcribed differentially depending on their 

presence in cancerous or normal tissues [63]. Some 

pseudogenes can be classified as cancer-specific [64]. 
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Depending on certain pathological conditions, these 

pseudogenes produce unique expression profiles, 

which are considered to be potential biomarkers 

for clinical application. For instance, transcription 

of SUMO1P, a pseudogene of the ubiquitin-like modi-

fier 1 gene SUMO1, is significantly elevated in gastric 

cancer tissues compared to adjacent non-tumorous 

tissues, and its expression level correlates with tu-

mor size, differentiation, lymphatic metastasis, and 

invasion [65]. Expression of the pseudogene INTS6P1, 

derived from the integrator complex subunit 6 gene 

INTS6, is significantly reduced in the plasma of 

patients with hepatocellular carcinoma compared 

to  healthy individuals  [66]. The transcript levels of 

FTH1P3, a pseudogene of the ferritin 1 heavy chain 

gene FTH1, are increased in cell lines and tissues of 

uveal melanoma [67]. Moreover, it has been shown 

that expression of the Foxo3 gene, which encodes a 

forkhead family TF, is regulated by its pseudogene 

Foxo3P [68]. Ectopic expression of Foxo3P, circular 

RNA Foxo3, and Foxo3 mRNA has been demonstrated 

to suppress tumor growth, as well as cancer cell pro-

liferation and survival.

In addition to cancer, changes in pseudogene 

expression levels have been observed in various 

other pathological conditions, e.g., neurodegenera-

tive diseases  [69], cardiovascular diseases  [70], and 

diabetes  [71]. Therefore, pseudogene transcription is 

suggested to be highly informative diagnostic bio-

marker for these disorders. Despite the recent iden-

tification of numerous pseudogenes, researchers typ-

ically focus only on the expression of their parental 

genes, excluding transcription of the corresponding 

pseudogenes. However, accounting for pseudogene ex-

pression is essential for accurately measuring paren-

tal gene transcription levels and for determining the 

contribution of pseudogenes to overall transcriptional 

activity. This consideration is particularly important 

when selecting transcriptional biomarkers.

Transcription analysis can be useful for identi-

fying gene networks and discovering genetic mod-

ifiers. Genes always function in interaction with oth-

er genes that influence their activity to some extent, 

forming genetic networks. Therefore, even monogenic 

diseases can have diverse genetic causes, which ex-

plains their genetic heterogeneity and variable phe-

notypic manifestations.

Genetic modifiers form a group of genes that can 

alter the phenotypic effects of disease-causing genes. 

They may affect the expression of genes exhibiting 

haploinsufficiency or modify the phenotype in haplo-

insufficiency contexts. A significant allelic imbalance 

in transcription, observed for 88% of genes in hu-

man tissues, is presumably caused by genetic modifi-

ers [72]. In dominantly inherited diseases caused by 

haploinsufficiency, allelic imbalance can either en-

hance the expression of the normal allele, compen-

sating for haploinsufficiency, or reduce its expression, 

thereby exacerbating the condition [73, 74].

Genetic compensation of mutant allele expres-

sion can be achieved either through the presence of 

additional gene copies in the genome, where loss of 

function of one gene is compensated by the activi-

ty of other genes with similar functions, or through 

changes in the expression pattern of the single nor-

mal allele, as demonstrated in several model organ-

isms [75]. This process, known as transcriptional ad-

aptation, modulates the expression of compensatory 

genes, thereby preventing or reducing the severity of 

the mutant phenotype [76]. For example, knockout or 

knockdown of the histone deacetylase  1 gene (HDAC-1) 

leads to increased expression of its homolog, HDAC-2, 

and vice versa, as shown in several cell lines and in 

both human and mouse tissues [77, 78].

Numerous examples have been described demon-

strating the influence of genetic modifiers on disease 

severity, with a particularly large body of research fo-

cused on identifying genetic modifiers of cystic fibro-

sis progression [79]. A study was conducted to inves-

tigate the association of phenotypic manifestations of 

cystic fibrosis in patients homozygous for the F508del 

mutation with transcription levels and allelic variants 

of the STAT3, IL1B, and IFNGR1 genes [80]. The in-

teraction of the products of these genes determines 

the balance between inflammation, antiviral defense, 

and tissue repair: STAT3 encodes a transcription fac-

tor of the JAK–STAT signaling pathway; IFNGR1 en-

codes the receptor for interferon-γ, which activates 

the JAK–STAT pathway; IL1B encodes the pro-inflam-

matory cytokine IL-1β, which activates the NF-κB 

pathway. Expression of all three genes was elevated 

in patients with cystic fibrosis, and the data demon-

strated associations between allelic variants of STAT3, 

IL1B, and IFNGR1 (determining their transcription 

levels) and disease severity [80].

A common intronic mutation in the CFTR gene is 

the c.3718-2477C>T variant, which is one of the most 

frequent mutations in the Polish cystic fibrosis patient 

population [81]. Patients carrying this mutation often 

exhibit a mild disease phenotype. It has been found 

that disease severity inversely correlates with a spe-

cific type of splicing transcript that facilitates the res-

toration of protein function. Studies have shown that 

increased expression of the splicing factors HTRA2-β1 

and SC35 in the presence of the c.3718-2477C>T mu-

tation promotes correct splicing of CFTR pre-mRNA, 

highlighting the role of splicing regulation as a sig-

nificant modifier of cystic fibrosis clinical progression 

in the context of intronic mutations [82].

Thus, transcriptomic data can be used to identi-

fy genetic modifiers associated with specific genetic 

disorders.
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GENE TRANSCRIPTION 
AS A BIOMARKER OF GENETIC DISEASES: 

ACTUAL CHALENGES

Not all LOF and GOF mutations lead to altered 

transcription level. As noted above, the NMD path-

way eliminates mRNA transcripts carrying premature 

stop codons. However, transcripts containing nonsense 

mutations located within the last 50-55 nucleotides of 

the penultimate exon or within the final exon may 

be able to avoid NMD action [83]. For instance, in the 

SOX10 gene, which encodes a transcription factor in-

volved in neural crest development, some nonsense 

mutations arise outside the regions typically trigger 

NMD. As a result, these mutant transcripts escape deg-

radation and produce truncated proteins with domi-

nant-negative activity, leading to severe neurological 

disease [84]. Conversely, nonsense mutations in SOX10 

that occur within NMD-targeted regions result in rec-

ognition and degradation of the mutant transcripts, 

causing a milder phenotype due to haploinsufficiency 

[84, 85]. Thus, while reduced transcript levels may in-

dicate gene inactivation in the case of LOF mutations, 

a presence of a LOF mutation by itself does not nec-

essarily lead to decreased transcription.

Moreover, the efficiency of the NMD pathway 

may vary between different cell types. This has been 

demonstrated in Schmid metaphyseal chondrodyspla-

sia, which is linked to a nonsense mutation in the 

COL10A1 collagen gene [86]. In patients with this con-

dition, the mutant mRNA is effectively degraded by 

the NMD mechanism in chondrocytes, but is poorly 

degraded (or not degraded at all) in lymphoblasts and 

osteoblasts. However, in this particular case, the issue 

about the cell type-specific differences in NMD effi-

ciency remains to be elucidated [86].

More than 20% of LOF variants have been demon-

strated to be located in exons that are frequently 

skipped during splicing and, therefore, do not pro-

vide a mutant phenotype [87]. In monogenic cardio-

myopathies caused by LOF variants in the titin gene 

(TTN), transcript-level analysis revealed that nonsense 

mutation variants are predominantly found in exons 

that are absent in the most highly expressed alterna-

tive transcripts. Consequently, these variants do not 

produce the deleterious phenotypic effects typically 

associated with nonsense mutations [88].

Blood cell transcription is a convenient but not 

obligatory informative diagnostic marker. Numer-

ous studies have demonstrated correlations between 

the expression of marker genes in blood cells of pa-

tients and both the presence of tumors and disease 

severity. For instance, blood cell transcriptome pro-

filing has been used for the early diagnosis of col-

orectal cancer [89], resulting in the development of a 

targeted expression panel based on the transcription 

of 29 genes. Such an advance proved to be valuable 

for testing asymptomatic cases and predicting dis-

ease severity. Another research, aimed at the blood 

transcriptome of patients with metastatic renal cell 

carcinoma (when some patients are characterized by 

absence of immune response to checkpoint inhibitors), 

provide to identify a minimal gene set of 14 tran-

scripts that changed in response to treatment. A gene 

expression panel was proposed that can accurately 

classify responders to therapy [90]. Similarly, tran-

scriptional biomarkers based on the analysis of blood 

cell transcriptomes have also been suggested for lung 

cancer diagnosis [91].

In addition to cancer, various inherited diseases 

can be diagnosed through the analysis of transcrip-

tomic alterations in blood cells. For example, tran-

scriptional biomarkers for Parkinson’s disease have 

been proposed based on gene expression data from 

blood, with 29 candidate genes identified for diagnos-

tic purposes at the transcriptional level [92].

However, not all genetic diseases can be diag-

nosed solely based on gene transcription profiles in 

blood cells. For instance, a study performing RNA 

sequencing of whole blood and skin fibroblasts from 

115 patients with various phenotypes but no estab-

lished genetic diagnosis found that only 17% of pa-

tients demonstrated a unique transcriptional profile of 

a specific gene set associated with a particular disease 

[93]. Comparative analysis of transcriptomes from the 

two tissues, blood and fibroblasts, showed that fibro-

blasts produced higher and more consistent expres-

sion of disease-associated genes, while only genes re-

lated to immunodeficiency conditions exhibited higher 

expression in blood compared to fibroblasts [93].

Moreover, the blood transcriptome cannot be 

used to study tissue-specific diseases. For example, 

most genes whose regulation is typically disrupted 

in muscle disorders are weakly expressed in blood, 

suggesting that RNA-seq from blood cells may be in-

sufficient to detect relevant transcriptional changes in 

muscle-specific genes [87].

It should also be noted that whole blood is not a 

representative material for studying sex-related dif-

ferences, since blood cells contain only 12.9% of all 

sex-associated transcripts [94].

Therefore, while transcriptomic analysis of blood 

can aid in the diagnosis of certain conditions, it is not 

sufficient to serve as a universal diagnostic approach.

Gene transcription levels depend on the envi-

ronment. As described above, gene transcription is 

strongly influenced by environmental factors; here, 

we highlight only a few of them.

Thousands of genes show age-related transcrip-

tional changes [95]. However, the extent of these 

changes and the existence of transcriptional programs 

controlling aging remain unresolved issues [96].
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Sex is another important factor determining 

the level and tissue specificity of gene transcription. 

Significant sex-associated differences in gene expres-

sion have been revealed, with genes showing sex-dif-

ferential expression involved in various biological 

processes, such as drug and hormone response, em-

bryonic development, tissue morphogenesis, fertiliza-

tion, sexual reproduction, lipid metabolism, and im-

mune response [94].

Humans, like many other organisms, exhib-

it temporal rhythms in gene expression (circadian 

rhythms) that regulate daily physiological cycles. The 

genetic regulation of circadian rhythms is generally 

conserved across all living organisms [97]. Circadian 

rhythms of mRNA transcription are followed by the 

combined action of an autonomous circadian oscil-

lator, system signals, and other temporal signaling, 

such as feeding and fasting cycles [98]. Although it is 

commonly believed that about 10% of genes exhibit 

cyclicity at the protein production level, nearly 50% 

of genes expressed in the liver are characterized by 

cyclic mRNA levels [99], therefore, a considerable part 

of the rhythmic proteome is assumed to be regulated 

at the translational or post-translational level [100]. 

A recent study investigated sex- and age-dependent 

24-hour rhythms of gene transcription across 46 tis-

sues and identified two waves of expression – morn-

ing and evening [101]. These waves are regulated by 

factors related to the biological clock, immunity, car-

bohydrate metabolism, and cell proliferation.

It has been shown that changes in gene tran-

scription can be triggered not only by mutations but 

also by external stimuli. For example, the increased 

transcription of the receptor tyrosine kinase gene 

RET is induced not only by the action of the glial 

cell line-derived neurotrophic factor (GDNF) and the 

GPI-anchored co-receptor GFRα1, but also depends 

on the concentration of interleukin IL-8 in the blood 

[102]. Increased transcription of the nerve growth 

factor receptor NGFR gene can be caused both by 

mutations within the gene itself and by systemic in-

flammatory diseases, such as osteoarthritis, psoriasis, 

inflammatory and degenerative disorders of the cen-

tral nervous system [103]. Increased expression of the 

MTOR gene, which encodes a serine/threonine protein 

kinase involved in the regulation of cellular metab-

olism, growth, and cell survival, can be induced by 

various inflammatory cytokines (for example, TNF-α) 

[104]. It has also been demonstrated that interferon 

γ can stimulate the upregulation of the MAPK1 gene, 

encoding mitogen-activated protein kinase  1. Such ef-

fect may be due to inflammation that is in progress or 

with the administration of interferon-based immuno-

modulatory therapy during genetic testing [105].

The microbiome is an essential source of genet-

ic modification that has a great impact on the host 

transcriptome. For example, mutations in the gene en-

coding mannose-binding lectin (MBL) correlate with 

more severe progression of cystic fibrosis in chron-

ic Pseudomonas aeruginosa infection [106]. Screen-

ing of commensal bacterial strains from respiratory 

tract microbiomes in cystic fibrosis patients identified 

strains capable of reducing the severity of inflamma-

tory responses induced by P.  aeruginosa [107]. Tran-

scriptomic analysis of a model system of mono- and 

co-infection with P.  aeruginosa and Streptococcus re-

vealed downregulation of several signaling pathways 

involved in inflammatory responses during co-infec-

tion; protective genes of Streptococcus were identi-

fied  [107].

Many of the aforementioned factors influenc-

ing transcription may also affect disease penetrance 

[108]. Incomplete penetrance can disrupt the inter-

pretation of gene transcription analyses similarly to 

the presence of allelic variants, since control groups 

may include individuals exhibiting transcriptional 

profiles characteristic of the mutant phenotype but 

lacking phenotypic expression for various reasons.

Thus, the environment can influence transcrip-

tion; however, although gene-environment interac-

tions are evident, proving them remains extremely 

challenging because comprehensive and systematic 

collection of data on interactions between the human 

transcriptome and environmental factors is currently 

practically impossible.

Issues of sample size and reliability of differ-

ential gene expression assessment. Transcriptomic 

studies are limited by patient sample size. For rare 

diseases, obtaining a sufficient number of samples is 

understandably difficult. Even for common diseases, 

achieving appropriate sample sizes remains problem-

atic. Due to high costs, many early next-generation 

sequencing studies typically included no more than 

three replicates per sample [109-112]. More recent 

studies have shown that at least 12 biological repli-

cates are needed to reliably detect most differentially 

expressed genes (DEGs) [113]. Comparative transcrip-

tomic analyses require large numbers of replicates 

due to genomic and transcriptomic plasticity. More-

over, DEG analysis can be complicated by poor re-

producibility of RNA sequencing experiments, which, 

in turn, is provided by not only biological but also 

technical factors.

An important challenge in RNA sequencing stud-

ies is the detection of genes with low transcription 

levels, which requires substantial sequencing depth. 

To identify rare transcripts or analyze differential ex-

pression at the isoform level, both sequencing depth 

and the number of replicates must be increased. 

Using three replicates allows identification of 20-40% 

of significantly differentially expressed genes, where-

as detecting 85% of all differentially expressed genes, 
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including those with less than two-fold changes, re-

quires more than 20 replicates [113].

The false discovery rate (FDR) is another critical 

factor in RNA sequencing experiments. It has been 

shown that the FDR threshold is approximately 2−r, 

where r is the number of replicates, varying from 0.25 

for two replicates to 0.007 for seven replicates [114].

However, the optimal number of replicates for 

each experiment may vary due to dependence on 

factors, such as dispersion, library size, and the bio-

logical conditions being compared. Obtaining reliable 

estimates of dispersion for each gene, which is essen-

tial for DEG analysis, is also complicated by the small 

sample sizes that is typical for most RNA sequencing 

experiments [115].

As described above, genes with narrow variability 

in transcription levels are more suitable as diagnostic 

markers, since their use contributes to better discrimi-

nation between the study and the control groups. Such 

genes are often housekeeping genes and other haplo-

insufficient genes. However, many housekeeping genes 

are expressed at low levels, meaning that changes in 

their transcription may fall below the resolution limit 

of RNA sequencing methods. Furthermore, a twofold 

decrease in gene transcription, which can result from 

the action of the NMD mechanism, may also go unde-

tected in transcriptomic analyses.

Moreover, not all environmental conditions can 

be assessed through RNA sequencing. Unaccounted 

factors contribute to the variability in transcription 

levels, which complicates their interpretation. Iden-

tifying the range of transcriptional variability under 

normal conditions is essential for reliably detect-

ing expression changes associated with pathological 

states. However, accomplishing this requires generat-

ing large volumes of new data, which remains chal-

lenging at  present.

GENE TRANSCRIPTION AS A BIOMARKER 
OF GENETIC DISEASES: PROSPECTS

Over the past decade, transcriptomics has become 

a powerful tool for studying human diseases at the 

molecular level. Transcriptomic profiling facilitates 

the identification of DEGs that may serve as disease 

biomarkers or therapeutic targets, thereby advanc-

ing the development of personalized treatment ap-

proaches.

However, transcription remains a challenging 

stage of gene expression to interpret due to its dynam-

ic nature and sensitivity to external factors. Accurate 

assessment of gene expression dynamics under nor-

mal conditions is crucial for analyzing transcriptional 

changes associated with pathological states. Current-

ly, such information can be obtained, among other 

sources, from publicly available databases containing 

RNA sequencing data from various human tissues 

across different ages and sexes. The most valuable 

publicly accessible resource is the Genotype-Tissue 

Expression (GTEx) project [116], which provides tran-

scriptomic data from 54 tissues collected from near-

ly 1000 individuals. Within these tissues, expression 

quantitative trait loci (eQTLs) have been identified, 

showing significant correlations with gene expression 

variation.

Since 2021, the Developmental Genotype-Tissue 

Expression (dGTEx) project has been initiated to cre-

ate an analytical resource for studying gene expres-

sion regulatory mechanisms during ontogenesis, the 

genetic basis of pediatric diseases, and their pro-

gression with age (https://www.genome.gov/Funded-

Programs-Projects/Developmental-Genotype-Tissue-

Expression/). Samples were collected from 120 rel-

atively healthy pediatric donors across three age 

groups. Although the sample size is currently limited, 

the value of these data is expected to grow as larger 

datasets become available.

In the future, with the accumulation of large-scale 

genomic and transcriptomic datasets, it will become 

possible to use transcription not only as a disease-as-

sociated marker but also to predict the presence 

of  specific genomic mutations. Transcriptomic analy-

sis serves as the initial step in such studies, enabling 

the  identification of DEGs.

The choice of tissue for gene expression analysis 

is critical. As discussed above, blood is a convenient 

material for such analyses. DEGs identified in blood 

can be used as biomarkers for various genetic dis-

eases, including cancer. Blood is considered to be the 

most favorable tissue for assessing environmental in-

fluences. A recent study analyzing transcriptomes of 

blood cells from over 3000 adults, combined with phe-

notypic data, such as medical history, medication use, 

lifestyle factors, and body mass index, demonstrated 

the outstanding potential of transcriptomic diagnos-

tics [117]. However, it is crucial to consider that gene 

expression patterns in blood cells may not accurately 

represent those in other tissues.

For this reason, diagnostic assays implemented in 

clinical practice are designed to test gene expression 

in tumor tissue. For example, in early-stage (I or II) 

breast cancer patients whose tumors are hormone 

receptor-positive and HER2-negative by histological 

and immunohistochemical assessment, the 21-gene 

expression assay Oncotype DX is used on tumor spec-

imens [118]. This gene expression analysis enables 

prediction of disease course, assessment of recur-

rence risk, and evaluation of whether chemotherapy 

will reduce that risk. A similar assay, MammaPrint, 

evaluates the expression of 70 genes associated with 

breast cancer  [119].
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Fig. 2. Algorithm for the development of a targeted gene-expression panel for disease diagnosis and prediction of specific 
structural variants in the genome.

Developing a transcription-based diagnostic pan-

el requires only the identification of genes whose ex-

pression is reproducibly altered under pathological 

conditions. However, to understand the underlying 

genetic mechanisms of the pathology, this is not suf-

ficient. The next step must be a comprehensive in-

vestigation of the structural alterations that provide 

the observed expression changes. Figure  2 shows an 

algorithm for the development of a targeted gene-ex-

pression panel that can be used not only for diag-

nosis but also to predict specific structural variants 

in the genome.

Clearly, to elucidate the molecular-genetic mech-

anisms underlying pathology, transcriptional analysis 

must be complemented by structural genomic profil-

ing. Ideally, the integration of GWAS and TWAS data 

will reveal correlations between genetic variants and 

expression changes, and will facilitate the identifica-

tion of modifier genes that critically influence dis-

ease penetrance and may serve as novel therapeutic 

targets. Characterizing and analyzing the transcrip-

tion of such modifier genes will advance our un-

derstanding of disease penetrance and broaden our 

insight into the architecture and dynamics of gene 

networks.

In summary, transcriptomic analysis is a power-

ful tool that can substantially optimize and enhance 

diagnostic workflows. It is clear that the accuracy of 

differential gene expression assessment will improve 

as sample sizes increase, RNA-sequencing studies 

expand, and computational algorithms for sequence 

data analysis advance. Further integration of genomic 

and transcriptomic datasets will enable the develop-

ment not only of diagnostic but also of predictive and 

prognostic targeted panels, thereby facilitating novel, 

effective strategies for the treatment of genetic dis-

eases.
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genes; GOF, gain-of-function; HERVs, human endoge-

nous retroviruses; LOF, loss-of-function; ME, mobile 

element; NMD, nonsense-mediated mRNA decay; SNP, 

single nucleotide polymorphism; TF, transcription 

factor.
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