
MOONLIGHTING PROTEINS OF HUMAN AND SOME OTHER EUKARYOTES S53
BIOCHEMISTRY (Moscow) Vol. 90 Suppl. 1 2025
function of pyruvate carboxylase resides in the
non-catalytic end of the TIM barrel, Biochim. Bio-
phys. Acta, 1803, 1038-1042, https://doi.org/10.1016/
j.bbamcr.2010.03.018.
33. Arribas-Carreira, L., Dallabona, C., Swanson, M. A.,
Farris, J., Østergaard, E., Tsiakas, K., Hempel, M.,
Aquaviva-Bourdain, C., Koutsoukos, S., Stence, N. V.,
Magistrati, M., Spector, E. B., Kronquist, K., Chris-
tensen, M., Karstensen, H. G., Feichtinger, R. G.,
Achleitner, M. T., Lawrence Merritt, J., II, Pérez, B.,
Ugarte, M., Grünewald, S., Riela, A. R., Julve, N.,
Arnoux, J.B., Haldar,K., Donnini,C., Santer,R., Lund,
A. M., Mayr, J. A., Rodriguez-Pombo, P., and Van
Hove, J. L. K. (2023) Pathogenic variants in GCSH
encoding the moonlighting H-protein cause com-
bined nonketotic hyperglycinemia and lipoate defi-
ciency, Hum. Mol. Genet., 32, 917-933, https://doi.org/
10.1093/hmg/ddac246.
34. Huberts, D. H., and van der Klei, I. J. (2010) Moon-
lighting proteins: an intriguing mode of multitask-
ing, Biochim. Biophys. Acta, 1803, 520-525, https://
doi.org/10.1016/j.bbamcr.2010.01.022.
35. Chen, C., Liu, H., Zabad, S., Rivera, N., Rowin, E.,
Hassan, M., Gomez De Jesus, S. M., Llinás Santos,
P. S., Kravchenko, K., Mikhova, M., Ketterer, S.,
Shen, A., Shen, S., Navas, E., Horan, B., Raudsepp, J.,
and Jeffery,C. (2021) MoonProt3.0: an update of the
moonlighting proteins database, Nucleic Acids Res.,
49, D368-D372, https://doi.org/10.1093/nar/gkaa1101.
36. Hernández, S., Ferragut, G., Amela, I., Perez-Pons, J.,
Piñol,J., Mozo-Villarias,A., Cedano,J., and Querol,E.
(2014) MultitaskProtDB: a database of multitasking
proteins, Nucleic Acids Res., 42, D517-D520, https://
doi.org/10.1093/nar/gkt1153.
37. Nuño-Cabanes, C., and Rodríguez-Navarro, S. (2021)
The promiscuity of the SAGA complex subunits:
multifunctional or moonlighting proteins? Biochim.
Biophys. Acta Gene Regul. Mech., 1864, 194607,
https://doi.org/10.1016/j.bbagrm.2020.194607.
38. Tan,A., Prasad,R., Lee,C., and Jho, E.H. (2022) Past,
present, and future perspectives of transcription fac-
tor EB (TFEB): mechanisms of regulation and associ-
ation with disease, Cell Death Differ., 29, 1433-1449,
https://doi.org/10.1038/s41418-022-01028-6.
39. Mboukou, A., Rajendra, V., Kleinova, R., Tisne, C.,
Jantsch, M.F., and Barraud,P. (2021) Transportin-1: a
nuclear import receptor with moonlighting functions,
Front. Mol. Biosci., 8, 638149, https://doi.org/10.3389/
fmolb.2021.638149.
40. González-Arzola, K., Velázquez-Cruz, A., Guerra-
Castellano, A., Casado-Combreras, M. Á., Pérez-
Mejías, G., Díaz-Quintana, A., Díaz-Moreno, I., and
De la Rosa, M. Á. (2019) New moonlighting func-
tions of mitochondrial cytochrome c in the cy-
toplasm and nucleus, FEBS Lett., 593, 3101-3119,
https://doi.org/10.1002/1873-3468.13655.
41. Novo, N., Ferreira, P., and Medina, M. (2021) The
apoptosis-inducing factor family: moonlighting pro-
teins in the crosstalk between mitochondria and
nuclei, IUBMB Life, 73, 568-581, https://doi.org/
10.1002/iub.2390.
42. Pujals,M., Resar,L., and Villanueva,J. (2021) HMGA1,
Moonlighting protein function, and cellular real es-
tate: location, location, location!, Biomolecules, 11,
1334, https://doi.org/10.3390/biom11091334.
43. Genet, S. A. A. M., Wolfs, J. R. E., Vu, C. B. A. K.,
Wolter, M., Broeren, M. A. C., van Dongen, J.,
Brunsveld,L., Scharnhorst,V., and van de Kerkhof,D.
(2023) Analysis of Neuron-Specific enolase isozymes
in human serum using immunoaffinity purification
and liquid chromatography-tandem mass spectrom-
etry quantification, J. Chromatogr. B Anal. Tech-
nol. Biomed. Life Sci., 1223, 123701, https://doi.org/
10.1016/j.jchromb.2023.123701.
44. Annese, T., Tamma, R., Ruggieri, S., and Ribatti, D.
(2019) Erythropoietin in tumor angiogenesis, Exp.
Cell Res., 374, 266-273, https://doi.org/10.1016/
j.yexcr.2018.12.013.
45. Huang, C. K., Sun, Y., Lv, L., and Ping, Y. (2022)
ENO1 and cancer, Mol. Ther. Oncolytics, 24, 288-298,
https://doi.org/10.1016/j.omto.2021.12.026.
46. Myers, T. D., and Palladino, M. J. (2023) Newly dis-
covered roles of triosephosphate isomerase includ-
ing functions within the nucleus, Mol. Med., 29, 18,
https://doi.org/10.1186/s10020-023-00612-x.
47. Fothergill-Gilmore, L.A., and Michels, P.A. (1993) Evo-
lution of glycolysis, Prog. Biophys. Mol. Biol., 59, 105-
235, https://doi.org/10.1016/0079-6107(93)90001-Z.
48. Sato, T., and Atomi, H. (2011) Novel metabolic path-
ways in Archaea, Curr. Opin. Microbiol., 14, 307-314,
https://doi.org/10.1016/j.mib.2011.04.014.
49. Kim, Y. E., Cho, K. H., Bang, I., Kim, C. H., Ryu, Y.S.,
Kim, Y., Choi, E. M., Nong, L. K., Kim, D., and Lee,
S. K. (2022) Characterization of an Entner-Doudoroff
pathway-activated Escherichia coli, Biotechnol. Biofu-
els Bioprod., 15, 120, https://doi.org/10.1186/s13068-
022-02219-6.
50. Ralser, M. (2018) An appeal to magic? The discovery
of a non-enzymatic metabolism and its role in the
origins of life, Biochem. J., 475, 2577-2592, https://
doi.org/10.1042/BCJ20160866.
51. Berezov, T. T., and Korovkin, B. F. (1998) Biochemistry
[in Russian], Meditsina, Moscow.
52. Adamus, G. (2017) Impact of autoantibodies against
glycolytic enzymes on pathogenicity of autoim-
mune retinopathy and other autoimmune disor-
ders, Front. Immunol., 8, 505, https://doi.org/10.3389/
fimmu.2017.00505.
53. Alramadhani, D., Aljahdali, A. S., Abdulmalik, O.,
Pierce, B. D., and Safo, M. K. (2022) Metabol-
ic reprogramming in sickle cell diseases: patho-
physiology and drug discovery opportunities,