
MITOCHONDRIA IN DEVELOPING BRAIN 2039
BIOCHEMISTRY (Moscow) Vol. 90 No. 12 2025
20. Swerdlow, R.H. (2023) The Alzheimer’s disease mito-
chondrial cascade hypothesis: a current overview, J.
Alzheimer’s Dis., 92, 751-768, https://doi.org/10.3233/
JAD-221286.
21. Paxinos, G., and Watson, C. (2007) The Rat Brain in
Stereotaxic Coordinates, 6th Edn., Academic Press,
Cambridge, MA, USA.
22. Gu, Y. Y., Zhao, X.R., Zhang, N., Yang, Y., Yi, Y., Shao,
Q. H., Liu, M. X., and Zhang, X. L. (2024) Mitochon-
drial dysfunction as a therapeutic strategy for neu-
rodegenerative diseases: current insights and future
directions, Ageing Res. Rev., 102, 102577, https://
doi.org/10.1016/j.arr.2024.102577.
23. Vaarmann, A., Mandel, M., Zeb, A., Wareski, P.,
Liiv, J., Kuum, M., Antsov, E., Liiv, M., Cagalinec, M.,
Choubey,V., and Kaasik, A. (2016) Mitochondrial bio-
genesis is required for axonal growth, Development,
143, 1981-1992, https://doi.org/10.1242/dev.128926.
24. Tilokani, L., Nagashima,S., Paupe, V., and Prudent,J.
(2018) Mitochondrial dynamics: overview of molecu-
lar mechanisms, Essays Biochem., 62, 341-360, https://
doi.org/10.1042/EBC20170104.
25. Eberhardt, E.L., Ludlam, A.V., Tan,Z., and Cianfrocco,
M.A. (2020) Miro: a molecular switch at the center of
mitochondrial regulation, Protein Sci., 29, 1269-1284,
https://doi.org/10.1002/pro.3839.
26. Henrichs, V., Grycova, L., Barinka, C., Nahacka, Z.,
Neuzil, J., Diez, S., Rohlena, J., Braun, M., and
Lansky, Z. (2020) Mitochondria-adaptor TRAK1 pro-
motes kinesin-1 driven transport in crowded environ-
ments, Nat. Commun., 11, 3123, https://doi.org/10.1038/
s41467-020-16972-5.
27. Seifan, A., Schelke, M., Obeng-Aduasare, Y., and
Isaacson, R. (2015) Early life epidemiology of Alzhei-
mer’s disease – a critical review, Neuroepidemiology,
45, 237-254, https://doi.org/10.1159/000439568.
28. Hagberg, H., Mallard, C., Rousset, C. I., and
Thornton, C. (2014) Mitochondria: hub of injury re-
sponses in the developing brain, Lancet Neurol.,
13, 217-232, https://doi.org/10.1016/S1474-4422(13)
70261-8.
29. Arrázola, M. S., Andraini, T., Szelechowski, M.,
Mouledous, L., Arnauné-Pelloquin, L., Davezac, N.,
Belenguer, P., Rampon, C., and Miquel, M. C. (2019)
Mitochondria in developmental and adult neurogene-
sis, Neurotox. Res., 36, 257-267, https://doi.org/10.1007/
s12640-018-9942-y.
30. Brunetti, D., Dykstra, W., Le, S., Zink, A., and
Prigione, A. (2021) Mitochondria in neurogenesis:
implications for mitochondrial diseases, Stem Cells,
39, 1289-1297, https://doi.org/10.1002/stem.3425.
31. Garone, C., De Giorgio, F., and Carli, S. (2024) Mi-
tochondrial metabolism in neural stem cells and
implications for neurodevelopmental and neurode-
generative diseases, J. Transl. Med., 22, 238, https://
doi.org/10.1186/s12967-024-05041-w.
32. Semple, B. D., Blomgren, K., Gimlin, K., Ferriero,
D. M., and Noble-Haeusslein, L. J. (2013) Brain de-
velopment in rodents and humans: identifying
benchmarks of maturation and vulnerability to in-
jury across species, Prog. Neurobiol., 106-107, 1-16,
https://doi.org/10.1016/j.pneurobio.2013.04.001.
33. Huszár, R., Zhang, Y., Blockus, H., and Buzsáki, G.
(2022) Preconfigured dynamics in the hippocam-
pus are guided by embryonic birthdate and rate of
neurogenesis, Nat. Neurosci., 25, 1201-1212, https://
doi.org/10.1038/s41593-022-01138-x.
34. Erecinska, M., Cherian, S., and Silver, I. A. (2004)
Energy metabolism in mammalian brain during
development, Prog. Neurobiol., 73, 397-445, https://
doi.org/10.1016/j.pneurobio.2004.06.003.
35. Encinas, J. M., Michurina, T. V., Peunova, N., Park,
J.H., Tordo,J., Peterson, D.A., Fishell,G., Koulakov,A.,
and Enikolopov,G. (2011) Division-coupled astrocytic
differentiation and age-related depletion of neural
stem cells in the adult hippocampus, Cell Stem Cell,
8, 566-579, https://doi.org/10.1016/j.stem.2011.03.010.
36. Stefanova, N.A., Maksimova, K.Y., Tyumentsev, M.A.,
Telegina, D.V., Rudnitskaya, E.A., and Kolosova, N.G.
(2025) The early postnatal synapse assembly and ex-
pression profiles of synapse-related genes in a sporad-
ic Alzheimer’s disease-like pathology, J. Alzheimer’s
Disease, https://doi.org/10.1177/13872877251396932.
37. Cicali, K.A., and Tapia-Rojas,C. (2024) Synaptic mito-
chondria: a crucial factor in the aged hippocampus,
Ageing Res. Rev., 101, 102524, https://doi.org/10.1016/
j.arr.2024.102524.
38. Khacho, M., Harris, R., and Slack, R. S. (2019) Mito-
chondria as central regulators of neural stem cell fate
and cognitive function, Nat. Rev. Neurosci., 20, 34-48,
https://doi.org/10.1038/s41583-018-0091-3.
39. Li, Z., Okamoto, K.-I., Hayashi, Y., and Sheng, M.
(2004) The importance of dendritic mitochondria
in the morphogenesis and plasticity of spines and
synapses, Cell, 119, 873-887, https://doi.org/10.1016/
j.cell.2004.11.003.
40. Quiroz, J. A., Gray, N. A., Kato, T., and Manji, H. K.
(2008) Mitochondrially mediated plasticity in the
pathophysiology and treatment of bipolar disorder,
Neuropsychopharmacology, 33, 2551-2565, https://
doi.org/10.1038/sj.npp.1301671.
41. Ruthel, G., and Hollenbeck, P. J. (2003) Response of
mitochondrial traffic to axon determination and dif-
ferential branch growth, J. Neurosci., 23, 8618-8624,
https://doi.org/10.1523/JNEUROSCI.23-24-08618.2003.
42. Spillane, M., Ketschek, A., Merianda, T. T., Twiss,
J. L., and Gallo, G. (2013) Mitochondria coordinate
sites of axon branching through localized intra-axo-
nal protein synthesis, Cell Rep., 5, 1564-1575, https://
doi.org/10.1016/j.celrep.2013.11.022.
43. Sheng, Z. H. (2017) The interplay of axonal ener-
gy homeostasis and mitochondrial trafficking and