
LAPASHINA et al.1940
BIOCHEMISTRY (Moscow) Vol. 90 No. 12 2025
5. Zubareva, V. M., Lapashina, A. S., Shugaeva, T. E.,
Litvin, A.V., and Feniouk, B.A. (2020) Rotary ion-trans-
locating ATPases/ATP synthases: diversity, similar-
ities, and differences, Biochemistry (Moscow), 85,
1613-1630, https://doi.org/10.1134/S0006297920120135.
6. Klingenberg, M. (2008) The ADP and ATP trans-
port in mitochondria and its carrier, Biochim. Bio-
phys. Acta, 1778, 1978-2021, https://doi.org/10.1016/
j.bbamem.2008.04.011.
7. Penin, F., Deléage, G., Godinot, C., and Gautheron,
D. C. (1986) Efficient reconstitution of mitochondri-
al energy-transfer reactions from depleted mem-
branes and F1-ATPase as a function of the amount
of bound oligomycin sensitivity-conferring protein
(OSCP), Biochim. Biophys. Acta, 852, 55-67, https://
doi.org/10.1016/0005-2728(86)90056-3.
8. Matsuno-Yagi, A., and Hatefi, Y. (1988) Estimation of
the turnover number of bovine heart F0F1 complexes
for ATP synthesis, Biochemistry, 27, 335-340, https://
doi.org/10.1021/bi00401a050.
9. Morgenstern,M., Peikert, C.D., Lübbert,P., Suppanz,I.,
Klemm, C., Alka, O., Steiert, C., Naumenko, N.,
Schendzielorz,A., Melchionda,L., Mühlhäuser, W.W.D.,
Knapp, B., Busch, J. D., Stiller, S. B., Dannenmaier, S.,
Lindau, C., Licheva, M., Eickhorst, C., Galbusera, R.,
Zerbes, R.M., Ryan, M.T., Kraft,C., Kozjak-Pavlovic,V.,
Drepper,F., Dennerlein,S., Oeljeklaus,S., Pfanner,N.,
Wiedemann,N., and Warscheid,B. (2021) Quantitative
high-confidence human mitochondrial proteome
and its dynamics in cellular context, Cell Metab.,
33, 2464-2483.e18, https://doi.org/10.1016/j.cmet.
2021.11.001.
10. Lapashina, A. S., and Feniouk, B. A. (2018) ADP-In-
hibition of H+-FOF1-ATP Synthase, Biochemistry
(Moscow), 83, 1141-1160, https://doi.org/10.1134/
S0006297918100012.
11. Campanella, M., Casswell, E., Chong, S., Farah, Z.,
Wieckowski, M. R., Abramov, A. Y., Tinker, A., and
Duchen, M. R. (2008) Regulation of mitochondri-
al structure and function by the F1Fo-ATPase in-
hibitor protein, IF1, Cell Metab., 8, 13-25, https://
doi.org/10.1016/j.cmet.2008.06.001.
12. Galkina, K.V., Zubareva, V.M., Kashko, N.D., Lapashina,
A. S., Markova, O. V., Feniouk, B. A., and Knorre,
D. A. (2022) Heterogeneity of starved yeast cells in
IF1 levels suggests the role of this protein in vivo,
Front. Microbiol., 13, 816622, https://doi.org/10.3389/
fmicb.2022.816622.
13. Lapashina, A. S., Kashko, N. D., Zubareva, V. M.,
Galkina, K. V., Markova, O. V., Knorre, D. A., and
Feniouk, B. A. (2022) Attenuated ADP-inhibition of
FOF1 ATPase mitigates manifestations of mitochondri-
al dysfunction in yeast, Biochim. Biophys. Acta, 1863,
148544, https://doi.org/10.1016/j.bbabio.2022.148544.
14. Pfaff, E., and Klingenberg, M. (1968) Adenine nu-
cleotide translocation of mitochondria. 1. Specific-
ity and control, Eur. J. Biochem., 6, 66-79, https://
doi.org/10.1111/j.1432-1033.1968.tb00420.x.
15. Winkler, H. H., Bygrave, F. L., and Lehninger, A. L.
(1968) Characterization of the atractyloside-sensi-
tive adenine nucleotide transport system in rat liv-
er mitochondria, J. Biol. Chem., 243, 20-28, https://
doi.org/10.1016/s0021-9258(18)99320-8.
16. Matsuno-Yagi,A., and Hatefi,Y. (1990) Studies on the
mechanism of oxidative phosphorylation. Positive co-
operativity in ATP synthesis, J. Biol. Chem., 265, 82-88,
https://doi.org/10.1016/S0021-9258(19)40198-1.
17. Panayiotou, C., Solaroli, N., and Karlsson, A. (2014)
The many isoforms of human adenylate kinases,
Int. J. Biochem. Cell Biol., 49, 75-83, https://doi.org/
10.1016/j.biocel.2014.01.014.
18. Fujisawa,K. (2023) Regulation of adenine nucleotide
metabolism by adenylate kinase isozymes: physio-
logical roles and diseases, Int. J. Mol. Sci., 24, 5561,
https://doi.org/10.3390/ijms24065561.
19. Miyoshi, K., Akazawa, Y., Horiguchi, T., and Noma, T.
(2009) Localization of adenylate kinase 4 in mouse
tissues, Acta Histochem. Cytochem., 42, 55-64, https://
doi.org/10.1267/ahc.08012.
20. Liu,R., Ström, A.-L., Zhai,J., Gal,J., Bao,S., Gong,W.,
and Zhu, H. (2009) Enzymatically inactive adenylate
kinase 4 interacts with mitochondrial ADP/ATP trans-
locase, Int. J. Biochem. Cell Biol., 41, 1371-1380,
https://doi.org/10.1016/j.biocel.2008.12.002.
21. Panayiotou, C., Solaroli, N., Johansson, M., and
Karlsson, A. (2010) Evidence of an intact N-terminal
translocation sequence of human mitochondrial ad-
enylate kinase 4, Int. J. Biochem. Cell Biol., 42, 62-69,
https://doi.org/10.1016/j.biocel.2009.09.007.
22. Wilson, D. E., Povey, S., and Harris, H. (1976) Ad-
enylate kinases in man: evidence for a third lo-
cus, Ann. Hum. Genet., 39, 305-313, https://doi.org/
10.1111/j.1469-1809.1976.tb00134.x.
23. Nam, K., Thodika, A. R. A., Tischlik, S., Phoeurk, C.,
Nagy, T. M., Schierholz, L., Ådén, J., Rogne, P.,
Drescher,M., Sauer-Eriksson, A.E., and Wolf-Watz,M.
(2024) Magnesium induced structural reorganization
in the active site of adenylate kinase, Sci. Adv., 10,
eado5504, https://doi.org/10.1126/sciadv.ado5504.
24. Blair, J. M. (1970) Magnesium, potassium, and
the adenylate kinase equilibrium. Magnesium as
a feedback signal from the adenine nucleotide
pool, Eur. J. Biochem., 13, 384-390, https://doi.org/
10.1111/j.1432-1033.1970.tb00940.x.
25. Gellerich, F. N. (1992) The role of adenylate ki-
nase in dynamic compartmentation of adenine
nucleotides in the mitochondrial intermembrane
space, FEBS Lett., 297, 55-58, https://doi.org/10.1016/
0014-5793(92)80326-c.
26. Tomasselli, A. G., Schirmer, R. H., and Noda, L. H.
(1979) Mitochondrial GTP-AMP phosphotransfer-
ase. 1. Purification and properties, Eur. J. Biochem.,