
MECHANISMS OF INTRACELLULAR SELECTION OF MITOCHONDRIAL DNA 1925
BIOCHEMISTRY (Moscow) Vol. 90 No. 12 2025
2. Taanman, J. W. (1999) The mitochondrial genome:
structure, transcription, translation and replica-
tion, Biochim. Biophys. Acta, 1410, 103-123, https://
doi.org/10.1016/s0005-2728(98)00161-3.
3. Medeiros, T. C., Thomas, R. L., Ghillebert, R., and
Graef, M. (2018) Autophagy balances mtDNA syn-
thesis and degradation by DNA polymerase POLG
during starvation, J. Cell Biol., 217, 1601-1611, https://
doi.org/10.1083/jcb.201801168.
4. Zhang, Q., Wang, Z., Zhang, W., Wen, Q., Li, X.,
Zhou,J., Wu,X., Guo,Y., Liu,Y., Wei,C., Qian,W., and
Tian,Y. (2021) The memory of neuronal mitochondri-
al stress is inherited transgenerationally via elevated
mitochondrial DNA levels, Nat. Cell Biol., 23, 870-880,
https://doi.org/10.1038/s41556-021-00724-8.
5. Galeota-Sprung, B., Fernandez,A., and Sniegowski,P.
(2022) Changes to the mtDNA copy number during
yeast culture growth, R. Soc. Open Sci., 9, 211842,
https://doi.org/10.1098/rsos.211842.
6. De Giorgi, C., and Saccone, C. (1989) Mitochondri-
al genome in animal cells. Structure, organiza-
tion, and evolution, Cell Biophys., 14, 67-78, https://
doi.org/10.1007/BF02797392.
7. Rand, D.M. (2001) The units of selection on mitochon-
drial DNA, Annu Rev Ecol Syst, 32, 415-448, https://
doi.org/10.1146/annurev.ecolsys.32.081501.114109.
8. Rossignol, R., Faustin, B., Rocher, C., Malgat, M.,
Mazat, J.-P., and Letellier, T. (2003) Mitochondrial
threshold effects, Biochem. J., 370, 751-762, https://
doi.org/10.1042/BJ20021594.
9. Wallace, D.C. (1986) Mitotic segregation of mitochon-
drial DNAs in human cell hybrids and expression of
chloramphenicol resistance, Somat. Cell Mol. Genet.,
12, 41-49, https://doi.org/10.1007/BF01560726.
10. Greaves, L. C., Preston, S. L., Tadrous, P. J., Taylor,
R. W., Barron, M. J., Oukrif, D., Leedham, S. J.,
Deheragoda,M., Sasieni,P., Novelli, M.R., Jankowski,
J.A.Z., Turnbull, D.M., Wright, N.A., and McDonald,
S. A. C. (2006) Mitochondrial DNA mutations are
established in human colonic stem cells, and mu-
tated clones expand by crypt fission, Proc. Natl.
Acad. Sci. USA, 103, 714-719, https://doi.org/10.1073/
pnas.0505903103.
11. Ågren, J. A., and Clark, A. G. (2018) Selfish genet-
ic elements, PLoS Genet., 14, e1007700, https://
doi.org/10.1371/journal.pgen.1007700.
12. Khrapko, K., Bodyak, N., Thilly, W. G., van Orsouw,
N. J., Zhang, X., Coller, H. A., Perls, T. T., Upton, M.,
Vijg, J., and Wei, J. Y. (1999) Cell-by-cell scanning
of whole mitochondrial genomes in aged human
heart reveals a significant fraction of myocytes with
clonally expanded deletions, Nucleic Acids Res., 27,
2434-2441, https://doi.org/10.1093/nar/27.11.2434.
13. Taylor, S.D., Ericson, N.G., Burton, J.N., Prolla, T.A.,
Silber, J. R., Shendure, J., and Bielas, J. H. (2014)
Targeted enrichment and high-resolution digital
profiling of mitochondrial DNA deletions in human
brain, Aging Cell, 13, 29-38, https://doi.org/10.1111/
acel.12146.
14. Nekhaeva,E., Bodyak, N.D., Kraytsberg,Y., McGrath,
S. B., Van Orsouw, N. J., Pluzhnikov, A., Wei, J. Y.,
Vijg, J., and Khrapko, K. (2002) Clonally expanded
mtDNA point mutations are abundant in individual
cells of human tissues, Proc. Natl. Acad. Sci. USA, 99,
5521-5526, https://doi.org/10.1073/pnas.072670199.
15. Jenuth, J. P., Peterson, A. C., and Shoubridge, E. A.
(1997) Tissue-specific selection for different mtDNA
genotypes in heteroplasmic mice, Nat. Genet., 16,
93-95, https://doi.org/10.1038/ng0597-93.
16. Korotkevich, E., Conrad, D. N., Gartner, Z. J., and
O’Farrell, P. H. (2025) Selfish mutations promote
age-associated erosion of mtDNA integrity in mam-
mals, Nat. Commun., 16, 5435, https://doi.org/10.1038/
s41467-025-60477-y.
17. Stewart, J. B., Freyer, C., Elson, J. L., Wredenberg, A.,
Cansu, Z., Trifunovic, A., and Larsson, N.-G. (2008)
Strong purifying selection in transmission of mam-
malian mitochondrial DNA, PLoS Biol., 6, e10, https://
doi.org/10.1371/journal.pbio.0060010.
18. Wei, W., Tuna, S., Keogh, M. J., Smith, K. R., Aitman,
T. J., Beales, P. L., Bennett, D. L., Gale, D. P., Bitner-
Glindzicz, M.A.K., Black, G.C., Brennan,P., Elliott,P.,
Flinter, F. A., Floto, R. A., Houlden, H., Irving, M.,
Koziell, A., Maher, E. R., Markus, H. S., et al. (2019)
Germline selection shapes human mitochondri-
al DNA diversity, Science, 364, eaau6520, https://
doi.org/10.1126/science.aau6520.
19. Franco,M., Pickett, S.J., Fleischmann,Z., Khrapko,M.,
Cote-L’Heureux,A., Aidlen,D., Stein,D., Markuzon,N.,
Popadin, K., Braverman, M., Woods, D. C., Tilly, J. L.,
Turnbull, D. M., and Khrapko, K. (2022) Dynamics
of the most common pathogenic mtDNA variant
m.3243A > G demonstrate frequency-dependen-
cy in blood and positive selection in the germline,
Hum. Mol. Genet., 31, 4075-4086, https://doi.org/
10.1093/hmg/ddac149.
20. Zhang, H., Esposito, M., Pezet, M. G., Aryaman, J.,
Wei,W., Klimm,F., Calabrese,C., Burr, S.P., Macabelli,
C. H., Viscomi, C., Saitou, M., Chiaratti, M. R., Stew-
art, J. B., Jones, N., and Chinnery, P. F. (2021) Mito-
chondrial DNA heteroplasmy is modulated during
oocyte development propagating mutation transmis-
sion, Sci. Adv., 7, eabi5657, https://doi.org/10.1126/
sciadv.abi5657.
21. Franco, M., Cote-L’Heureux, A., Fleischmann, Z.,
Chen, Z., Khrapko, M., Vyshedskiy, B., Braver-
man, M., Popadin, K., Pickett, S., Woods, D. C., Tilly,
J. L., Turnbull, D., and Khrapko, K. (2023) A nov-
el, wave-shaped profile of germline selection of
pathogenic mtDNA mutations is discovered by by-
passing a classical statistical bias, bioRxiv, https://
doi.org/10.1101/2023.11.21.568140.