
MITOSTASIS – FOCUS ON VIMENTIN FILAMENTS 1917
BIOCHEMISTRY (Moscow) Vol. 90 No. 12 2025
19. Kulik, A.V., Nekrasova, O.E., and Minin, A.A. (2006)
Mitochondria motility is regulated by F-actin [in Rus-
sian], Biol. Membr., 23, 42-51.
20. Minin, A. A., Kulik, A. V., Gyoeva, F. K., Li, Y.,
Goshima,G., and Gelfand, V.I. (2006) Regulation of mi-
tochondria distribution by RhoA and formins, J. Cell
Sci., 119, 659-670, https://doi.org/10.1242/jcs.02762.
21. Nekrasova, O.E., Kulik, A.V., and Minin, A.A. (2007)
Protein kinase C regulates mitochondrial motility [in
Russian], Biol. Membr., 24, 126-132.
22. Nekrasova, O. E., Mendez, M. G., Chernoivanenko,
I.S., Tyurin-Kuzmin, P.A., Kuczmarski, E.R., Gelfand,
V. I., Goldman, R. D., and Minin, A. A. (2011) Vimen-
tin intermediate filaments modulate the motility of
mitochondria, Mol. Biol. Cell, 22, 2282-2289, https://
doi.org/10.1091/mbc.E10-09-0766.
23. Rapaport, D. (2003) Finding the right organelle Tar-
geting signals in mitochondrial outer-membrane
proteins, EMBO Rep., 4, 948-952, https://doi.org/
10.1038/sj.embor.embor937.
24. Araiso,Y., Imai,K., and Endo,T. (2022) Role of the TOM
complex in protein import into mitochondria: struc-
tural views, Annu. Rev. Biochem., 91, 679-703, https://
doi.org/10.1146/annurev-biochem-032620-104527.
25. Schwarz, N., and Leube, R. E. (2016) Intermediate
filaments as organizers of cellular space: how they
affect mitochondrial structure and function, Cells, 5,
30, https://doi.org/10.3390/cells5030030.
26. Etienne-Manneville, S. (2018) Cytoplasmic inter-
mediate filaments in cell biology, Annu. Rev. Cell
Dev. Biol., 34, 1-28, https://doi.org/10.1146/annurev-
cellbio-100617-062534.
27. Gilbert, S., Loranger, A., Daigle, N., and Marceau, N.
(2001) Simple epithelium keratins 8 and 18 pro-
vide resistance to Fas-mediated apoptosis. The pro-
tection occurs through a receptor-targeting mod-
ulation, J. Cell Biol., 154, 763-773, https://doi.org/
10.1083/jcb.200102130.
28. Capetanaki, Y. (2002) Desmin cytoskeleton: a po-
tential regulator of muscle mitochondrial behavior
and function, Trends Cardiovasc. Med., 12, 339-348,
https://doi.org/10.1016/S1050-1738(02)00184-6.
29. Uttam, J., Hutton, E., Coulombe, P. A., Anton-
Lamprecht, I., Yu, Q. C., Gedde-Dahl, T., Jr., Fine,
J. D., and Fuchs, E. (1996) The genetic basis of epi-
dermolysis bullosa simplex with mottled pigmen-
tation, Proc. Natl. Acad. Sci. USA, 93, 9079-9084,
https://doi.org/10.1073/pnas.93.17.9079.
30. Brownlees, J., Ackerley, S., Grierson, A. J., Jacobsen,
N. J., Shea, K., Anderton, B. H., Leigh, P. N., Shaw,
C.E., and Miller, C.C. (2002) Charcot-Marie-Tooth dis-
ease neurofilament mutations disrupt neurofilament
assembly and axonal transport, Hum. Mol. Genet., 11,
2837-2844, https://doi.org/10.1093/hmg/11.23.2837.
31. Milner, D.J., Mavroidis, M., Weisleder, N., and Capet-
anaki,Y. (2000) Desmin cytoskeleton linked to muscle
mitochondrial distribution and respiratory function,
J. Cell Biol., 150, 1283-1298, https://doi.org/10.1083/
jcb.150.6.1283.
32. Wagner, O. I., Lifshitz, J., Janmey, P. A., Linden, M.,
McIntosh, T. K., and Leterrier, J. F. (2003) Mecha-
nisms of mitochondria-neurofilament interactions,
J. Neurosci., 23, 9046-9058, https://doi.org/10.1523/
JNEUROSCI.23-27-09046.2003.
33. Tolstonog, G.V., Belichenko-Weitzmann, I.V., Lu, J.P.,
Hartig, R., Shoeman, R. L., Traub, U., and Traub, P.
(2005) Spontaneously immortalized mouse embryo
fibroblasts: growth behavior of wild-type and vi-
mentin-deficient cells in relation to mitochondrial
structure and activity, DNA Cell Biol., 24, 680-709,
https://doi.org/10.1089/dna.2005.24.680.
34. Fuchs,E., and Weber,K. (1994) Intermediate filaments:
structure, dynamics, function and disease, Annu. Rev.
Biochem., 63, 345-382, https://doi.org/10.1146/annurev.
bi.63.070194.002021.
35. Alieva, I. B., Shakhov, A. S., Dayal, A. A., Parfenteva,
O. I., and Minin, A. A. (2024) Unique role of vimen-
tin in the intermediate filament proteins family,
Biochemistry (Moscow), 89, 726-736, https://doi.org/
10.1134/S0006297924040114.
36. Dayal, A.A., Medvedeva, N.V., and Minin, A.A. (2022)
N-Terminal fragment of vimentin is responsible for
binding of mitochondria in vitro, Membr. Cell Biol.,
5, 21-28.
37. Dayal, A. A., Medvedeva, N. V., Nekrasova, T. M.,
Duhalin, S.D., Surin, A.K., and Minin, A.A. (2020) De-
smin interacts directly with mitochondria, Int.J. Mol.
Sci., 21, 8122, https://doi.org/10.3390/ijms21218122.
38. Chernoivanenko, I. S., Matveeva, E. A., Gelfand, V. I.,
Goldman, R. D., and Minin, A. A. (2015) Mitochon-
drial membrane potential is regulated by vimentin
intermediate filaments, FASEB J., 29, 820-827, https://
doi.org/10.1096/fj.14-259903.
39. Matveeva, E. A., Venkova, L. S., Chernoivanenko,
I.S., and Minin, A.A. (2015) Vimentin is involved in
regulation of mitochondrial motility and membrane
potential by Rac1, Biol. Open., 4, 1290-1297, https://
doi.org/10.1242/bio.013326.
40. Huynh, T. N., Toperzer, J., Scherer, A., Gumina, A.,
Brunetti, T., Mansour, M. K., Markovitz, D. M., and
Russo, B. C. (2024) Vimentin regulates mitochondri-
al ROS production and inflammatory responses of
neutrophils, Front. Immunol., 15, 1416275, https://
doi.org/10.3389/fimmu.2024.1416275.
41. San Martín, A., and Griendling, K. K. (2010) Redox
control of vascular smooth muscle migration, Antiox-
id. Redox Signal., 12, 625-640, https://doi.org/10.1089/
ars.2009.2852.
42. Venkova, L.S., Chernoivanenko, I.S., and Minin, A.A.
(2014) Hydrogen peroxide stimulating migration of
fibroblasts is formed in mitochondria, Membr. Cell Biol.,
8, 309-313, https://doi.org/10.1134/S1990747814050080.