
POTASSIUM TRANSPORT IN MITOCHONDRIA 1907
BIOCHEMISTRY (Moscow) Vol. 90 No. 12 2025
13. Yaguzhinsky, L.S., Skorobogatova, Y.A., and Nesterov,
S. V. (2017) Functionally significant low-temperature
structural alterations in mitochondrial membranes
of homoiothermic animals, Biophysics, 62, 415-420,
https://doi.org/10.1134/S0006350917030241.
14. Nesterov, S., Chesnokov, Y., Kamyshinsky, R., Pan-
teleeva, A., Lyamzaev, K., Vasilov, R., and Yaguzhin-
sky, L. (2021) Ordered clusters of the complete oxi-
dative phosphorylation system in cardiac mitochon-
dria, Int.J. Mol. Sci., 22, 1462, https://doi.org/10.3390/
ijms22031462.
15. Nesterov, S. V., Plokhikh, K. S., Chesnokov, Y. M.,
Mustafin, D. A., Goleva, T. N., Rogov, A. G., Vasilov,
R. G., and Yaguzhinsky, L. S. (2024) Safari with an
electron gun: visualization of protein and membrane
interactions in mitochondria in natural environ-
ment, Biochemistry (Moscow), 89, 257-268, https://
doi.org/10.1134/S0006297924020068.
16. Nesterov, S. V. (2025) Membrane curvature controls
the efficiency of oxidative phosphorylation system,
Biochem. Mosc. Suppl. Ser. Membr. Cell Biol., 19, 151-
156, https://doi.org/10.1134/S1990747825700059.
17. Bulthuis, E. P., Dieteren, C. E. J., Bergmans, J.,
Berkhout, J., Wagenaars, J. A., van de Westerlo,
E. M. A., Podhumljak, E., Hink, M. A., Hesp, L. F. B.,
Rosa, H. S., Malik, A. N., Lindert, M. K.-T., Willems,
P. H. G. M., Gardeniers, H. J. G. E., den Otter, W. K.,
Adjobo-Hermans, M. J. W., and Koopman, W. J. H.
(2023) Stress-dependent macromolecular crowding
in the mitochondrial matrix, EMBO J., 42, e108533,
https://doi.org/10.15252/embj.2021108533.
18. Nesterov, S. V., Yaguzhinsky, L. S., Podoprigora, G.I.,
and Nartsissov, Ya. R. (2020) Amino acids as regula-
tors of cell metabolism, Biochemistry (Moscow), 85,
393-408, https://doi.org/10.1134/S000629792004001X.
19. Parry, B. R., Surovtsev, I. V., Cabeen, M. T., O’Hern,
C. S., Dufresne, E. R., and Jacobs- and Wagner, C.
(2014) Thebacterial cytoplasm has glass-like proper-
ties and is fluidized by metabolic activity, Cell, 156,
183-194, https://doi.org/10.1016/j.cell.2013.11.028.
20. Mitchell, P., and Moyle, J. (1969) Translocation of
some anions cations and acids in rat liver mito-
chondria, Eur. J. Biochem., 9, 149-155, https://doi.org/
10.1111/j.1432-1033.1969.tb00588.x.
21. Garlid, K. D. (1978) Unmasking the mitochondri-
al KH exchanger: swelling-induced K
+
-loss, Bio-
chem. Biophys. Res. Commun., 83, 1450-1455,
https://doi.org/10.1016/0006-291X(78)91383-9.
22. Nakashima, R. A., and Garlid, K. D. (1982) Quinine
inhibition of Na
+
and K
+
transport provides evidence
for two cation/H
+
exchangers in rat liver mitochon-
dria, J.Biol. Chem., 257, 9252-9254, https://doi.org/
10.1016/S0021-9258(18)34058-4.
23. Martin, W. H., DiResta, D.J., and Garlid, K. D. (1986)
Kinetics of inhibition and binding of dicyclohex-
ylcarbodiimide to the 82,000-dalton mitochondrial
K
+
/H
+
antiporter, J.Biol. Chem., 261, 12300-12305,
https://doi.org/10.1016/S0021-9258(18)67238-2.
24. Zotova, L., Aleschko, M., Sponder, G., Baumgart-
ner, R., Reipert, S., Prinz, M., Schweyen, R. J., and
Nowikovsky, K. (2010) Novel components of an ac-
tive mitochondrial K
+
/H
+
exchange, J.Biol. Chem.,
285, 14399-14414, https://doi.org/10.1074/jbc.M109.
059956.
25. Tsujii,M., Tanudjaja,E., Zhang,H., Shimizukawa, H.,
Konishi, A., Furuta, T., Ishimaru, Y., and Uozumi, N.
(2024) Dissecting structure and function of the mon-
ovalent cation/H
+
antiporters Mdm38 and Ylh47
in Saccharomyces cerevisiae, J. Bacteriol., 206,
e00182-24, https://doi.org/10.1128/jb.00182-24.
26. Shao, J., Fu, Z., Ji, Y., Guan, X., Guo, S., Ding, Z.,
Yang, X., Cong, Y., and Shen, Y. (2016) Leucine zip-
per-EF-hand containing transmembrane protein 1
(LETM1) forms a Ca
2+
/H
+
antiporter., Sci. Rep., 6,
34174, https://doi.org/10.1038/srep34174.
27. Dimmer, K. S., Navoni, F., Casarin, A., Trevisson, E.,
Endele, S., Winterpacht, A., Salviati, L., and Scor-
rano, L. (2008) LETM1, deleted in Wolf-Hirschhorn
syndrome is required for normal mitochondrial
morphology and cellular viability, Hum. Mol. Genet.,
17, 201-214, https://doi.org/10.1093/hmg/ddm297.
28. Nakamura, S., Matsui, A., Akabane, S., Tamura, Y.,
Hatano, A., Miyano, Y., Omote, H., Kajikawa, M.,
Maenaka, K., Moriyama, Y., Endo, T., and Oka, T.
(2020) The mitochondrial inner membrane protein
LETM1 modulates cristae organization through its
LETM domain, Commun. Biol., 3, 99, https://doi.org/
10.1038/s42003-020-0832-5.
29. Austin, S., Tavakoli, M., Pfeiffer, C., Seifert, J., Matta-
rei,A., De Stefani,D., Zoratti,M., and Nowikovsky,K.
(2017) LETM1-mediated K
+
and Na
+
homeostasis regu-
lates mitochondrial Ca
2+
efflux, Front. Physiol., 8, 839,
https://doi.org/10.3389/fphys.2017.00839.
30. Mohammed, S. E. M., and Nowikovsky, K. (2024)
Themysteries of LETM1 pleiotropy, Pharmacol. Res.,
210, 107485, https://doi.org/10.1016/j.phrs.2024.107485.
31. Lin, Q.-T., and Stathopulos, P. B. (2019) Molecular
mechanisms of leucine zipper EF-hand containing
transmembrane protein-1 function in health and dis-
ease, Int.J. Mol. Sci., 20, 286, https://doi.org/10.3390/
ijms20020286.
32. Okamura, K., Matsushita, S., Kato, Y., Watanabe, H.,
Matsui, A., Oka, T., and Matsuura, T. (2019) In vitro
synthesis of the human calcium transporter Letm1
within cell-sized liposomes and investigation of its
lipid dependency, J.Biosci. Bioeng., 127, 544-548,
https://doi.org/10.1016/j.jbiosc.2018.11.003.
33. Tamai,S., Iida,H., Yokota,S., Sayano,T., Kiguchiya,S.,
Ishihara, N., Hayashi, J.-I., Mihara, K., and Oka, T.
(2008) Characterization of the mitochondrial protein
LETM1, which maintains the mitochondrial tubular
shapes and interacts with the AAA-ATPase BCS1L,