
SUPPRESSING MITOCHONDRIAL ROS PRODUCTION IN PRECLINICAL MODELS OF DISEASE 1877
BIOCHEMISTRY (Moscow) Vol. 90 No. 12 2025
42. Watson, M. A., Brar, H., Gibbs, E. T., 2nd, Wong,
H. S., Dighe, P. A., McKibben, B., Riedmaier, S.,
Siu, A., Polakowski, J. S., Segreti, J. A., Liu, X.,
Chung,S., Pliushchev, Y.M., Gesmundo,N., Wang,Z.,
Vortherms, T.A., and Brand, M.D. (2023) Suppression
of superoxide/hydrogen peroxide production at
mitochondrial site I
Q
decreases fat accumulation,
improves glucose tolerance and normalizes fasting
insulin concentration in mice fed a high-fat
diet, Free Radic. Biol. Med., 204, 276-286, https://
doi.org/10.1016/j.freeradbiomed.2023.05.022.
43. Orr, A.L., Vargas,L., Turk, C.N., Baaten, J.E., Matzen,
J.T., Dardov, V.J., Attle, S.J., Li,J., Quackenbush, D.C.,
Goncalves, R. L. S., Perevoshchikova, I. V., Petrassi,
H.M., Meeusen, S.L., Ainscow, E.K., and Brand, M.D.
(2015) Suppressors of superoxide production from
mitochondrial complex III, Nature Chem. Biol., 11,
834-836, https://doi.org/10.1038/nchembio.1910.
44. Fouqueray, P., Leverve, X., Fontaine, E., Baquié, M.,
Wollheim,C., Lebovitz,H., and Bozec,S. (2011) Imeg-
limin - a new oral anti-diabetic that targets the three
key defects of type 2 diabetes, J. Diabetes Metab., 2,
126-133, https://doi.org/10.4172/2155-6156.1000126.
45. Yendapally,R., Sikazwe,D., Kim, S.S., Ramsinghani,S.,
Fraser-Spears,R., Witte, A. P., and La-Viola,B. (2020)
A review of phenformin, metformin, and imeglimin,
Drug Dev. Res., 2020, 1-12, https://doi.org/10.1002/
ddr.21636.
46. Helzlouer, K.J., and Kensler, T.W. (1993) Cancer che-
moprotection by oltipraz: experimental and clinical
considerations, Preventive Med., 22, 783-795, https://
doi.org/10.1006/pmed.1993.1072.
47. Gero, D., Torregrossa, R., Perry, A., Waters, A.,
Le-Trionnaire, S., Whatmore, J. L., Wood, M., and
Whiteman,M. (2016) The novel mitochondria-target-
ed hydrogen sulfide (H
2
S) donors AP123 and AP39
protect against hyperglycemic injury in microvascu-
lar endothelial cells in vitro, Pharmacol. Res., 113,
186-198, https://doi.org/10.1016/j.phrs.2016.08.019.
48. Huang, S., Dong, R., Xu, G., Liu, J., Gao, X., Yu, S.,
Qie, P., Gou,G., Hu, M., Wang, Y., Peng, J., Guang, B.,
Xu,Y., and Yang,T. (2020) Synthesis, characterization,
and in vivo evaluation of desmethyl anethole trithi-
one phosphate prodrug for ameliorating cerebral
ischemia-reperfusion injury in rats, ACS Omega, 5,
4595-4602, https://doi.org/10.1021/acsomega.9b04129.
49. Li,Y., and Trush, M.A. (1998) Diphenyleneiodonium,
an NAD(P)H oxidase inhibitor, also potently inhib-
its mitochondrial reactive oxygen species produc-
tion, Biochem. Biophys. Res. Commun., 253, 295-299,
https://doi.org/10.1006/bbrc.1998.9729.
50. Wong, H. S., Monternier, P. A., Orr, A. L., and Brand,
M.D. (2018) Plate-based measurement of superoxide
and hydrogen peroxide production by isolated mi-
tochondria, Meth. Mol. Biol., 1782, 287-299, https://
doi.org/10.1007/978-1-4939-7831-1_16.
51. Orr, A. L., Ashok, D., Sarantos, M. R., Ng, R., Shi, T.,
Gerencser, A. A., Hughes, R. E., and Brand, M. D.
(2014) Novel inhibitors of mitochondrial sn-glycerol
3-phosphate dehydrogenase, PLoS One, 9, e89938,
https://doi.org/10.1371/journal.pone.0089938.
52. Zotta,A., Toller-Kawahisa,J., Palsson-McDermott, E.M.,
O’Carroll, S. M., Henry, Ó. C., Day, E. A., McGettrick,
A.F., Ward, R.W., Ryan, D.G., Watson, M. A., Brand,
M. D., Runtsch, M. C., Maitz, K., Lueger, A., Kargl, J.,
Miljkovic, J. L., Lavelle, E. C., and O’Neill, L. A. J.
(2025) Mitochondrial respiratory complex III sustains
IL-10 production in activated macrophages and pro-
motes tumor-mediated immune evasion, Sci. Adv., 11,
7307, https://doi.org/10.1126/sciadv.adq7307.
53. Watson, M. A., Pattavina, B., Hilsabeck, T. A. U.,
Lopez-Dominguez, J., Kapahi, P., and Brand, M. D.
(2021) S3QELs protect against diet-induced intestinal
barrier dysfunction, Aging Cell, 20, e13476, https://
doi.org/10.1111/acel.13476.
54. Barnett,D., Zimmer, T.S., Booraem,C., Palaguachi,F.,
Meadows, S.M., Xiao,H., Chouchani, E.T., Orr, A.G.,
and Orr, A. L. (2024) Mitochondrial complex III-
derived ROS amplify immunometabolic changes in
astrocytes and promote dementia pathology, bioRxiv,
https://doi.org/10.1101/2024.08.19.608708.
55. Vial, G., Chauvin, M. A., Bendridi, N., Durand, A.,
Meugnier, E., Madec, A. M., Bernoud-Hubac, N., Pais
de Barros, J.P., Fontaine,E., Acquaviva,C., Hallakou-
Bozec, S., Bolze, S., Vidal, H., and Rieusset, J. (2015)
Imeglimin normalizes glucose tolerance and insu-
lin sensitivity and improves mitochondrial function
in liver of a high-fat, high-sucrose diet mice mod-
el, Diabetes, 64, 2254-2264, https://doi.org/10.2337/
db14-1220.
56. Detaille, D., Vial, G., Borel, A. L., Cottet-Rouselle, C.,
Hallakou-Bozec, S., Bolze, S., Fouqueray, P., and
Fontaine, E. (2016) Imeglimin prevents human en-
dothelial cell death by inhibiting mitochondrial
permeability transition without inhibiting mito-
chondrial respiration, Cell Death Discov., 2, 15072,
https://doi.org/10.1038/cddiscovery.2015.72.
57. Detaille, D., Pasdois, P., Semont, A., Dos Santos, P.,
and Diolez,P. (2019) An old medicine as a new drug
to prevent mitochondrial complex I from produc-
ing oxygen radicals, PLoS One, 14, e0216385, https://
doi.org/10.1371/journal.pone.0216385.
58. Nagendra, L., Bhattacharya, S., Bhat, S., Dutta, D.,
Kamrul-Hasan, A. B., and Kalra, S. (2024) Compara-
tive analysis of metformin and imeglimin: exploring
therapeutic implications, Bangladesh J. Endocrinol.
Metab., 3, 3-8, https://doi.org/10.4103/bjem.bjem_2_24.
59. Tewari,J., Qidwai, K.A., Tewari,A., Kaur,S., Tewari,V.,
and Maheshwari, A. (2025) Efficacy and safety of
imeglimin, a novel oral agent in the management
of type 2 diabetes mellitus: a systematic review and
meta-analysis, Naunyn-Schmiedeberg’s Arch. Phar-