
BELOSLUDTSEV et al.1808
BIOCHEMISTRY (Moscow) Vol. 90 No. 12 2025
108. Šileikytė, J., Devereaux, J., de Jong, J., Schiavone, M.,
Jones, K., Nilsen, A., Bernardi, P., Forte, M., and
Cohen, M. S. (2019) Second-generation inhibitors
of the mitochondrial permeability transition pore
with improved plasma stability, ChemMedChem, 14,
1771-1782, https://doi.org/10.1002/cmdc.201900376.
109. Roy,S., Šileikytė,J., Schiavone,M., Neuenswander,B.,
Argenton, F., Aubé, J., Hedrick, M. P., Chung, T. D.,
Forte, M. A., Bernardi, P., and Schoenen, F. J. (2015)
Discovery, synthesis, and optimization of diaryli-
soxazole-3-carboxamides as potent inhibitors of
the mitochondrial permeability transition pore,
ChemMedChem, 10, 1655-1671, https://doi.org/10.1002/
cmdc.201500284.
110. Stocco, A., Smolina, N., Sabatelli, P., Šileikytė, J.,
Artusi, E., Mouly, V., Cohen, M., Forte, M.,
Schiavone, M., and Bernardi, P. (2021) Treatment
with a triazole inhibitor of the mitochondrial per-
meability transition pore fully corrects the patholo-
gy of sapje zebrafish lacking dystrophin, Pharmacol
Res., 165, 105421, https://doi.org/10.1016/j.phrs.2021.
105421.
111. Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V.,
Blachly-Dyson, E., Di Lisa, F., and Forte, M. A. (2006)
Themitochondrial permeability transition from in vi-
tro artifact to disease target, FEBSJ., 273, 2077-2099,
https://doi.org/10.1111/j.1742-4658.2006.05213.x.
112. Panel,M., Ghaleh,B., and Morin,D. (2018) Mitochon-
dria and aging: Arole for the mitochondrial transition
pore? Aging Cell, 17, e12793, https://doi.org/10.1111/
acel.12793.
113. Angeli, S., Foulger, A., Chamoli, M., Peiris, T. H.,
Gerencser, A., Shahmirzadi, A. A., Andersen, J., and
Lithgow, G. (2021) The mitochondrial permeability
transition pore activates the mitochondrial unfold-
ed protein response and promotes aging, Elife, 10,
e63453, https://doi.org/10.7554/eLife.63453.
114. Du, H., Guo, L., Fang, F., Chen, D., Sosunov, A. A.,
McKhann, G. M., Yan, Y., Wang, C., Zhang, H.,
Molkentin, J. D., Gunn-Moore, F. J., Vonsattel, J. P.,
Arancio, O., Chen, J. X., and Yan, S. D. (2008) Cyclo-
philin D deficiency attenuates mitochondrial and
neuronal perturbation and ameliorates learning and
memory in Alzheimer’s disease, Nat. Med., 14, 1097-
1105, https://doi.org/10.1038/nm.1868.
115. Zhu, Y., Duan, C., Lü, L., Gao, H., Zhao, C., Yu, S.,
Uéda, K., Chan, P., and Yang, H. (2011) α-Synuclein
overexpression impairs mitochondrial function by
associating with adenylate translocator, Int. J. Bio-
chem. Cell Biol., 43, 732-741, https://doi.org/10.1016/
j.biocel.2011.01.014.
116. Belosludtseva, N.V., Matveeva, L.A., and Belosludtsev,
K. N. (2023) Mitochondrial dyshomeostasis as an
early hallmark and a therapeutic target in amyo-
trophic lateral sclerosis, Int.J. Mol. Sci., 24, 16833,
https://doi.org/10.3390/ijms242316833.
117. Singh,S., Ganguly,U., Pal,S., Chandan,G., Thakur,R.,
Saini, R. V., Chakrabarti, S. S., Agrawal, B. K., and
Chakrabarti, S. (2022) Protective effects of cyclospo-
rineA on neurodegeneration and motor impairment
in rotenone-induced experimental models of Parkin-
son’s disease, Eur.J. Pharmacol., 929, 175129, https://
doi.org/10.1016/j.ejphar.2022.175129.
118. Bordet, T., Berna, P., Abitbol, J. L., and Pruss, R. M.
(2010) Olesoxime (TRO19622): a novel mitochon-
drial-targeted neuroprotective compound, Pharma-
ceuticals (Basel), 3, 345-368, https://doi.org/10.3390/
ph3020345.
119. Argaud, L., Gateau-Roesch, O., Muntean, D.,
Chalabreysse, L., Loufouat, J., Robert, D., and
Ovize, M. (2005) Specific inhibition of the mito-
chondrial permeability transition prevents lethal
reperfusion injury, J. Mol. Cell Cardiol., 38, 367-374,
https://doi.org/10.1016/j.yjmcc.2004.12.001.
120. Nakagawa,T., Shimizu,S., Watanabe,T., Yamaguchi,O.,
Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and
Tsujimoto, Y. (2005) Cyclophilin D-dependent mito-
chondrial permeability transition regulates some ne-
crotic but not apoptotic cell death, Nature, 434, 652-
658, https://doi.org/10.1038/nature03317.
121. Cung, T. T., Morel, O., Cayla, G., Rioufol, G., Garcia-
Dorado, D., Angoulvant, D., Bonnefoy-Cudraz, E.,
Guérin,P., Elbaz,M., Delarche,N., Coste,P., Vanzetto,G.,
Metge,M., Aupetit, J.F., Jouve,B., Motreff,P., Tron,C.,
Labeque, J. N., Steg, P. G., et al. (2015) Cyclosporine
before PCI in patients with acute myocardial infarc-
tion, N.Engl.J. Med., 373, 1021-1031, https://doi.org/
10.1056/NEJMoa1505489.
122. Wrogemann,K., and Pena, S.D. (1976) Mitochondrial
calcium overload: a general mechanism for cell-
necrosis in muscle diseases, Lancet, 1, 672-674, https://
doi.org/10.1016/s0140-6736(76)92781-1.
123. Zulian,A., Schiavone,M., Giorgio,V., and Bernardi,P.
(2016) Forty years later: mitochondria as therapeu-
tic targets in muscle diseases, Pharmacol. Res., 113,
563-573, https://doi.org/10.1016/j.phrs.2016.09.043.
124. Millay, D. P., Sargent, M. A., Osinska, H., Baines,
C. P., Barton, E. R., Vuagniaux, G., Sweeney, H. L.,
Robbins, J., and Molkentin, J. D. (2008) Genetic and
pharmacologic inhibition of mitochondrial-dependent
necrosis attenuates muscular dystrophy, Nat. Med.,
14, 442-447, https://doi.org/10.1038/nm1736.
125. Dubinin, M. V., and Belosludtsev, K. N. (2023) Ion
channels of the sarcolemma and intracellular or-
ganelles in duchenne muscular dystrophy: a role in
the dysregulation of ion homeostasis and a possible
target for therapy, Int.J. Mol. Sci., 24, 2229, https://
doi.org/10.3390/ijms24032229.
126. Wang, P., Zhang, N., Wu, B., Wu, S., Zhang, Y., and
Sun, Y. (2020) The role of mitochondria in vascular
calcification, J.Transl. Int. Med., 8, 80-90, https://
doi.org/10.2478/jtim-2020-0013.