
MICROBIAL 2-ENOATE REDUCTASES 1787
BIOCHEMISTRY (Moscow) Vol. 90 No. 12 2025
brucei, FEBSJ., 288, 5430-5445, https://doi.org/10.1111/
febs.15812.
40. Sancho, J. (2006) Flavodoxins: sequence, folding,
binding, function and beyond, Cell Mol. Life Sci., 63,
855-864, https://doi.org/10.1007/s00018-005-5514-4.
41. LaRoche,J., Boyd, P. W., McKay, R. M. L., and Geider,
R. J. (1996) Flavodoxin as an insitu marker for iron
stress in phytoplankton, Nature, 382, 802-805, https://
doi.org/10.1038/382802a0.
42. Bertsova, Y. V., Kulik, L. V., Mamedov, M. D., Baykov,
A. A., and Bogachev, A. V. (2019) Flavodoxin with
an air-stable flavin semiquinone in a green sulfur
bacterium, Photosynth. Res., 142, 127-136, https://
doi.org/10.1007/s11120-019-00658-1.
43. Wood, P. M. (1983) Why do c-type cytochromes ex-
ist? FEBS Lett., 164, 223-226, https://doi.org/10.1016/
0014-5793(83)80289-0.
44. Attwood, P. V. (1995) The structure and the mecha-
nism of action of pyruvate carboxylase, Int. J. Bio-
chem. Cell Biol., 27, 231-249, https://doi.org/10.1016/
1357-2725(94)00087-r.
45. Douce, R., Bourguignon, J., Neuburger, M., and
Rébeillé,F. (2001) The glycine decarboxylase system:
a fascinating complex, Trends Plant Sci., 6, 167-176,
https://doi.org/10.1016/s1360-1385(01)01892-1.
46. Venskutonytė,R., Koh, A., Stenström, O., Khan, M.T.,
Lundqvist, A., Akke, M., Bäckhed, F., and Lindkvist-
Petersson, K. (2021) Structural characterization of
the microbial enzyme urocanate reductase medi-
ating imidazole propionate production, Nat. Com-
mun., 12, 1347, https://doi.org/10.1038/s41467-021-
21548-y.
47. Delavari, N., Zhang, Z., and Stull, F. (2024) Rapid re-
action studies on the chemistry of flavin oxidation
in urocanate reductase, J.Biol. Chem., 300, 105689,
https://doi.org/10.1016/j.jbc.2024.105689.
48. Bertsova, Y. V., Serebryakova, M. V., Bogachev, V. A.,
Baykov, A.A., and Bogachev, A.V. (2024) Acrylate re-
ductase of an anaerobic electron transport chain of
the marine bacterium Shewanella woodyi, Biochem-
istry (Moscow), 89, 701-710, https://doi.org/10.1134/
S0006297924040096.
49. Little, A.S., Younker, I.T., Schechter, M.S., Bernardino,
P. N., Méheust, R., Stemczynski, J., Scorza, K.,
Mullowney, M.W., Sharan,D., Waligurski,E., Smith,R.,
Ramaswamy, R., Leiter, W., Moran, D., McMillin, M.,
Odenwald, M. A., Iavarone, A. T., Sidebottom, A. M.,
Sundararajan,A., Pamer, E.G., Eren, A.M., and Light,
S.H. (2024) Dietary- and host-derived metabolites are
used by diverse gut bacteria for anaerobic respira-
tion, Nat. Microbiol., 9, 55-69, https://doi.org/10.1038/
s41564-023-01560-2.
50. Koh, A., and Bäckhed, F. (2020) From association to
causality: the role of the gut microbiota and its func-
tional products on host metabolism, Mol. Cell, 78,
584-596, https://doi.org/10.1016/j.molcel.2020.03.005.
51. Molinaro, A., Bel Lassen, P., Henricsson, M., Wu, H.,
Adriouch, S., Belda, E., Chakaroun, R., Nielsen, T.,
Bergh, P. O., Rouault, C., André, S., Marquet, F.,
Andreelli, F., Salem, J. E., Assmann, K., Bastard, J. P.,
Forslund, S., Le Chatelier, E., Falony, G., Pons, N.,
Prifti, E., Quinquis, B., Roume, H., Vieira-Silva, S.,
Hansen, T. H., Pedersen, H. K., Lewinter, C., Sønder-
skov, N. B., Køber, L., Vestergaard, H., Hansen, T.,
Zucker, J.D., Galan,P., Dumas, M.E., Raes,J., Oppert,
J. M., Letunic, I., Nielsen, J., Bork, P., Ehrlich, S. D.,
Stumvoll, M., Pedersen, O., Aron-Wisnewsky, J.,
Clément, K., and Bäckhed, F. (2020) Imidazole pro-
pionate is increased in diabetes and associated with
dietary patterns and altered microbial ecology, Nat.
Commun., 11, 5881, https://doi.org/10.1038/s41467-
020-19589-w.
52. Koh, A., Molinaro, A., Ståhlman, M., Khan, M. T.,
Schmidt,C., Mannerås-Holm,L., Wu,H., Carreras,A.,
Jeong, H., Olofsson, L. E., Bergh, P. O., Gerdes, V.,
Hartstra,A., de Brauw,M., Perkins,R., Nieuwdorp,M.,
Bergström, G., and Bäckhed, F. (2018) Microbial-
ly produced imidazole propionate impairs insulin
signaling through mTORC1, Cell, 175, 947-961.e17,
https://doi.org/10.1016/j.cell.2018.09.055.
53. Unden, G., Strecker, A., Kleefeld, A., and Kim, O. B.
(2016) C
4
-Dicarboxylate utilization in aerobic and an-
aerobic growth, EcoSal Plus, https://doi.org/10.1128/
ecosalplus.ESP-0021-2015.
54. Van Hellemond, J. J., Klockiewicz, M., Gaasenbeek,
C. P., Roos, M. H., and Tielens, A. G. (1995) Rhodo-
quinone and complex II of the electron transport
chain in anaerobically functioning eukaryotes, J.Biol.
Chem., 270, 31065-31070, https://doi.org/10.1074/
jbc.270.52.31065.
55. Ramotar, K., Conly, J. M., Chubb, H., and Louie,
T. J. (1984) Production of menaquinones by intes-
tinal anaerobes, J.Infect. Dis., 150, 213-218, https://
doi.org/10.1093/infdis/150.2.213.
56. Wargnies, M., Plazolles, N., Schenk, R., Villafraz, O.,
Dupuy, J. W., Biran, M., Bachmaier, S., Baudouin, H.,
Clayton,C., Boshart,M., and Bringaud,F. (2021) Met-
abolic selection of a homologous recombination-me-
diated gene loss protects Trypanosoma brucei from
ROS production by glycosomal fumarate reductase,
J.Biol. Chem., 296, 100548, https://doi.org/10.1016/
j.jbc.2021.100548.
57. Sieburth, J. M. (1961) Antibiotic properties of acryl-
ic acid, a factor in the gastrointestinal antibiosis of
polar marine animals, J. Bacteriol., 82, 72-79, https://
doi.org/10.1128/jb.82.1.72-79.1961.
58. Todd, J.D., Curson, A.R., Sullivan, M.J., Kirkwood,M.,
and Johnston, A. W. (2012) The Ruegeria pomeroyi
acuI gene has a role in DMSP catabolism and resem-
bles yhdH of E.coli and other bacteria in conferring
resistance to acrylate, PLoS One, 7, e35947, https://
doi.org/10.1371/journal.pone.0035947.