
ZAMYATNINA1770
BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons li-
cense, and indicate if changes were made. The images
or other third party material in this article are includ-
ed in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative
Commons license and your intended use is not permit-
ted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.
REFERENCES
1. Myrou, A., Barmpagiannos, K., Ioakimidou, A., and
Savopoulos, C. (2025) Molecular biomarkers in neu-
rological diseases: advances in diagnosis and progno-
sis, Int. J. Mol. Sci., 26, 2231, https://doi.org/10.3390/
ijms26052231.
2. Frye, R.E. (2022) A personalized multidisciplinary ap-
proach to evaluating and treating autism spectrum
disorder, J. Pers. Med., 12, 464, https://doi.org/10.3390/
jpm12030464.
3. Jia, X., He, X., Huang, C., Li, J., Dong, Z., and Liu, K.
(2024) Protein translation: biological processes and
therapeutic strategies for human diseases, Sig. Trans-
duct. Target. Ther., 9, 44, https://doi.org/10.1038/
s41392-024-01749-9.
4. Scheper, G.C., van der Knaap, M.S., and Proud, C.G.
(2007) Translation matters: protein synthesis defects
in inherited disease, Nat. Rev. Genet., 8, 711-723,
https://doi.org/10.1038/nrg2142.
5. Li,W., Wang,X., van der Knaap, M.S., and Proud, C.G.
(2004) Mutations linked to leukoencephalopathy with
vanishing white matter impair the function of the eu-
karyotic initiation factor 2B complex in diverse ways,
Mol. Cell. Biol., 24, 3295-3306, https://doi.org/10.1128/
MCB.24.8.3295-3306.2004.
6. Satterfield, T. F., and Pallanck, L. J. (2006) Ataxin-2
and its Drosophila homolog, ATX2, physically assem-
ble with polyribosomes, Hum. Mol. Genet., 15, 2523-
2532, https://doi.org/10.1093/hmg/ddl173.
7. Eshraghi, M., Karunadharma, P. P., Blin, J., Shah-
ani, N., Ricci, E. P., Michel, A., Urban, N. T., Galli, N.,
Sharma, M., Ramírez-Jarquín, U. N., Florescu, K.,
Hernandez, J., and Subramaniam, S. (2021) Mutant
Huntingtin stalls ribosomes and represses protein
synthesis in a cellular model of Huntington dis-
ease, Nat. Commun., 12, 1461, https://doi.org/10.1038/
s41467-021-21637-y.
8. Fujioka, S., Sundal, C., Strongosky, A. J., Castanedes,
M. C., Rademakers, R., Ross, O. A., Vilariño-Güell, C.,
Farrer, M. J., Wszolek, Z. K., and Dickson, D. W.
(2013) Sequence variants in eukaryotic transla-
tion initiation factor 4-gamma (eIF4G1) are as-
sociated with Lewy body dementia, Acta Neuro-
pathol., 125, 425-438, https://doi.org/10.1007/s00401-
012-1059-4.
9. Zheng, W., Wang, K., Wu, Y., Yan, G., Zhang, C.,
Li, Z., Wang, L., and Chen, S. (2022) C9orf72 reg-
ulates the unfolded protein response and stress
granule formation by interacting with eIF2α, Ther-
anostics, 12, 7289-7306, https://doi.org/10.7150/
thno.76138.
10. Schleich, S., Strassburger, K., Janiesch, P. C., Kole-
dachkina, T., Miller, K. K., Haneke, K., Cheng, Y.-S.,
Küchler, K., Stoecklin, G., Duncan, K. E., and Tele-
man, A. A. (2014) DENR-MCT-1 promotes translation
re-initiation downstream of uORFs to control tissue
growth, Nature, 512, 208-212, https://doi.org/10.1038/
nature13401.
11. Schleich,S., Acevedo, J.M., Clemm von Hohenberg,K.,
and Teleman, A.A. (2017) Identification of transcripts
with short stuORFs as targets for DENR•MCTS1-
dependent translation in human cells, Sci. Rep., 7,
3722, https://doi.org/10.1038/s41598-017-03949-6.
12. Chen, Y., Liu, S., Ren,Z., Wang,F., Liang, Q., Jiang,Y.,
Dai, R., Duan, F., Han, C., Ning, Z., Xia, Y., Li, M.,
Yuan,K., Qiu,W., Yan, X.X., Dai,J., Kopp, R.F., Huang,J.,
Xu, S., Tang, B., Wu, L., Gamazon, E. R., Bigdeli, T.,
Gershon, E., Huang, H., Ma, C., Liu, C., and Chen, C.
(2024) Cross-ancestry analysis of brain QTLs enhanc-
es interpretation of schizophrenia genome-wide as-
sociation studies, Am. J. Hum. Genet., 111, 2444-2457,
https://doi.org/10.1016/j.ajhg.2024.09.001.
13. Neale, B. M., Kou, Y., Liu, L., Ma’ayan, A., Samocha,
K. E., Sabo, A., Lin, C.-F., Stevens, C., Wang, L.-S.,
Makarov, V., Polak, P., Yoon, S., Maguire, J.,
Crawford, E. L., Campbell, N. G., Geller, E. T.,
Valladares, O., Schafer, C., Liu, H., Zhao, T., Cai, G.,
Lihm, J., Dannenfelser, R., Jabado, O., Peralta, Z.,
Nagaswamy, U., Muzny, D., Reid, J. G., Newsham, I.,
Wu, Y., Lewis, L., Han, Y., Voight, B. F., Lim, E.,
Rossin,E., Kirby,A., Flannick,J., Fromer,M., Shakir,K.,
Fennell, T., Garimella, K., Banks, E., Poplin, R.,
Gabriel, S., DePristo, M., Wimbish, J. R., Boone, B. E.,
Levy, S. E., Betancur, C., Sunyaev, S., Boerwinkle, E.,
Buxbaum, J.D., Cook, E.H.,Jr., Devlin,B., Gibbs, R.A.,
Roeder, K., Schellenberg, G. D., Sutcliffe, J. S., and
Daly, M.J. (2012) Patterns and rates of exonic denovo
mutations in autism spectrum disorders, Nature,
485, 242-245, https://doi.org/10.1038/nature11011.
14. Kurki, M. I., Saarentaus, E., Pietiläinen, O., Gorm-
ley, P., Lal, D., Kerminen, S., Torniainen-Holm, M.,
Hämäläinen, E., Rahikkala, E., Keski-Filppula, R.,
Rauhala, M., Korpi-Heikkilä, S., Komulainen-
Ebrahim, J., Helander, H., Vieira, P., Männikkö, M.,
Peltonen,M., Havulinna, A.S., Salomaa,V., Pirinen,M.,
Suvisaari, J., Moilanen, J. S., Körkkö, J., Kuismin, O.,
Daly, M. J., and Palotie, A. (2019) Contribution of