
HYBRID ORIGIN OF A TETRAPLOID IN THE GENUS Salicornia 1721
BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
35. Vanderpoorten, A., Raspé, O., Risterrucci, A. M.,
Gohy, L., and Hardy, O. J. (2009) Identification and
characterization of eight nuclear microsatellite loci in
the glasswort genus Salicornia (Amaranthaceae), Belg.
J. Bot., 142, 204-208, https://doi.org/10.2307/41427187.
36. Sciuto, K., Wolf, M. A., Sfriso, A., Brancaleoni, L.,
Iberite, M., and Iamonico, D. (2023) Molecular and
Morphometric Update on Italian Salicornia (Che-
nopodiaceae), with a Focus on the Species S. pro-
cumbens s.l., Plants, 12, 375, https://doi.org/10.3390/
plants12020375.
37. Xu, H., Guo, Y., Xia, M., Yu, J., Chi, X., Han, Y., and
Zhang,F. (2024) An updated phylogeny and adaptive
evolution within Amaranthaceae sl. inferred from
multiple phylogenomic datasets, Ecology and Evolu-
tion, 14, e70013, https://doi.org/10.1002/ece3.70013.
38. Tzvelev, N. N. (1996) Salicornia. Flora of Eastern Europe
(N. N. Tzvelev, ed) Vol. 9, pp. 73-74, Mir i sem’ya-95,
St. Petersburg.
39. Beer, S. S., and Demina, O. N. (2005) A new species
of Salicornia (Chenopodiaceae) from European Rus-
sia, Willdenowia, 35, 253-257, https://doi.org/10.3372/
wi.35.35204.
40. Sukhorukov, A. P., and Akopian, Zh. A. (2013) Conspec-
tus of the Chenopodiaceae Family of the Caucasus,
MAKS Press, Moscow, p.76.
41. Sukhorukov, A. P. (2014) Carpology of the Chenopo-
diaceae family in relation to problems of phylogeny,
systematics, and diagnostics of its representatives,
Grif i K., Tula, p. 400.
42. Piirainen, M. (2015) Pattern of morphological varia-
tion of Salicornia in north Europe, Nordic J. Bot., 33,
733-746, https://doi.org/10.1111/njb.00848.
43. Bolger, A.M., Lohse,M., and Usadel,B. (2014) Trimmo-
matic: a flexible trimmer for Illumina sequence data,
Bioinformatics, 30, btu170, https://doi.org/10.1093/
bioinformatics/btu170.
44. Liu,C., Shi,L., Zhu,Y., Chen,H., Zhang,J., and Lin,X.
(2012) CpGAVAS, an integrated web server for the
annotation, visualization, analysis, and GenBank
submission of completely sequenced chloroplast ge-
nome sequences, BMC Genomics, 13, 715, https://
doi.org/10.1186/1471-2164-13-715.
45. Lowe, T. M., and Chan, P. P. (2016) tRNAscan-SE On-
line: integrating search and context for analysis of
transfer RNA genes, Nucleic Acids Res., 44, W54-W57,
https://doi.org/10.1093/nar/gkw413.
46. Laslett, D., and Canback, B. (2004) ARAGORN, a pro-
gram to detect tRNA genes and tmRNA genes in
nucleotide sequences, Nucleic Acids Res., 32, 11-16,
https://doi.org/10.1093/nar/gkh152.
47. Greiner,S., Lehwark,P., and Bock,R. (2019) Organel-
lar GenomeDRAW (OGDRAW) version 1.3.1: expanded
toolkit for the graphical visualization of organellar
genomes, Nucleic Acids Res., 47, W59-W64, https://
doi.org/10.1093/nar/gkz238.
48. Katoh,K., and Standley, D.M. (2013) MAFFT Multiple
Sequence Alignment Software version 7: improve-
ments in performance and usability, Mol. Biol. Evol.,
30, 772-780, https://doi.org/10.1093/molbev/mst010.
49. Hall, T. A. (1999) BioEdit: A user-friendly biological
sequence alignment editor and analysis program
for Windows 95/98/NT, Nucleic Acids Symp. Ser.,
41, 95-98.
50. Kadereit, G., Mucina, L., and Freitag, H. (2006) Phy-
logeny of Salicornioideae (Chenopodiaceae): diversifi-
cation, biogeography, and evolutionary trends in leaf
and flower morphology, Taxon, 55, 617-642, https://
doi.org/10.2307/25065639.
51. Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., and
Phillippy, A. M. (2017) Canu: scalable and accurate
long-read assembly via adaptive k-mer weighting and
repeat separation, Genome Res., 27, 722-736, https://
doi.org/10.1101/gr.215087.116.
52. Edgar, R.C. (2004) MUSCLE: multiple sequence align-
ment with high accuracy and high throughput, Nu-
cleic Acids Res., 32, 1792-1797, https://doi.org/10.1093/
nar/gkh340.
53. Milne, I., Stephen, G., Bayer, M., Cock, P. J. A.,
Pritchard, L., Cardle, P., Shaw, D., and Marshall, D.
(2013) Using Tablet for visual exploration of sec-
ond-generation sequencing data, Brief Bioinform., 14,
193-202, https://doi.org/10.1093/bib/bbs012.
54. Ronquist,F., and Huelsenbeck, J.P. (2003) MrBayes 3:
Bayesian phylogenetic inference under mixed mod-
els, Bioinformatics, 19, 1572-1574, https://doi.org/
10.1093/bioinformatics/btg180.
55. Ronquist, F., Teslenko, M., van der Mark, P., Ayres,
D.L., Darling,A., Höhna,S., Larget,B., Liu,L., Suchard,
M. A., and Huelsenbeck, J. P. (2012) MrBayes 3.2: ef-
ficient Bayesian phylogenetic inference and model
choice across a large model space, Syst. Biol., 61,
539-542, https://doi.org/10.1093/sysbio/sys029.
56. Logacheva, M. D., Samigullin, T. H., Dhingra, A., and
Penin, A. A. (2008) Comparative chloroplast genom-
ics and phylogenetics of Fagopyrum esculentum
ssp. ancestrale – A wild ancestor of cultivated buck-
wheat, BMC Plant Biol., 8, 59, https://doi.org/10.1186/
1471-2229-8-59.
57. Yao,G., Jin,J-J., Li, H.-T., Yang, J.-B., Shiva Mandala,V.,
Croley, M., Mostow, R., Douglas, N. A., Chase, M. W.,
Christenhusz, M.J.M., Soltis, D.E., Soltis, P.S., Smith,
S.A., Brockington, S.F., Moore, M.J., Yi,T-Sh., and Li,
D.-Zh. (2019) Plastid phylogenomic insights into the
evolution of Caryophyllales, Mol. Phylogenet. Evol.,
134, 74-86, https://doi.org/10.1016/j.ympev.2018.12.023.
58. Schmitz-Linneweber, C. R., Maier, M., Alcaraz, J.-P.,
Cottet, A., Herrmann, R. G., and Mache, R. (2001)
The plastid chromosome of spinach (Spinacia ol-
eracea): complete nucleotide sequence and gene
organization, Plant Mol. Biol., 45, 307-315, https://
doi.org/10.1023/a:1006478403810.