
BOTTROMYCIN A
2
MECHANISM OF ACTION 1639
BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
46. Orelle, C., Szal, T., Klepacki, D., Shaw, K. J., Vazquez-
Laslop, N., and Mankin, A. S. (2013) Identifying the
targets of aminoacyl-tRNA synthetase inhibitors
by primer extension inhibition, Nucleic Acids Res.,
41, e144, https://doi.org/10.1093/nar/gkt526.
47. Andreev, D., Hauryliuk, V., Terenin, I., Dmitriev, S.,
Ehrenberg, M., and Shatsky, I. (2008) The bacterial
toxin RelE induces specific mRNA cleavage in the
A site of the eukaryote ribosome, RNA, 14, 233-239,
https://doi.org/10.1261/rna.693208.
48. Kabilov, M.R., Komarova, E.S., Pichkur, E.B., Zotova,
P. A., Kasatsky, P. S., Volynkina, I. A., Tupikin, A. E.,
Pavlova, J.A., Lukianov, D.A., Osterman, I.A., Pyshniy,
D.V., Paleskava, A., Bogdanov, A.A., Dontsova, O.A.,
Konevega, A. L., and Sergiev, P. V. (2024) Context
specificity of translation inhibitors revealed by
toe-seq, Res. Square, https://doi.org/10.21203/rs.3.
rs-3832009/v1.
49. Cashel,M. (1969) The control of ribonucleic acid syn-
thesis in Escherichia coli. IV. Relevance of unusual
phosphorylated compounds from amino acid-starved
stringent strains, J.Biol. Chem., 244, 3133-3141, https://
doi.org/10.1016/S0021-9258(18)93106-6.
50. Jain, I., Kolesnik, M., Kuznedelov, K., Minakhin, L.,
Morozova,N., Shiriaeva,A., Kirillov,A., Medvedeva,S.,
Livenskyi, A., Kazieva, L., Makarova, K. S., Koonin,
E. V., Borukhov, S., Severinov, K., and Semenova, E.
(2024) tRNA anticodon cleavage by target-activat-
ed CRISPR-Cas13a effector, Sci. Adv., 10, eadl0164,
https://doi.org/10.1126/sciadv.adl0164.
51. Paleskava, A., Maksimova, E. M., Vinogradova, D. S.,
Kasatsky, P. S., Kirillov, S. V., and Konevega, A. L.
(2021) Differential contribution of protein factors and
70S ribosome to elongation, Int. J. Mol. Sci., 22, 9614,
https://doi.org/10.3390/ijms22179614.
52. Tolicheva, O. A., Bidzhieva, M. S., Kasatskiy, P. S.,
Marina, V. I., Sergiev, P. V., Konevega, A. L., and
Paleskava, A. (2024) Separation of short fluorescent-
ly labeled peptides by gel electrophoresis for an
in vitro translation study, Nanobiotechnol. Rep., 19,
423-431, https://doi.org/10.1134/S263516762460127X.
53. Takada, H., Crowe-McAuliffe, C., Polte, C., Sidorova,
Z. Y., Murina, V., Atkinson, G. C., Konevega, A. L.,
Ignatova, Z., Wilson, D. N., and Hauryliuk, V. (2021)
RqcH and RqcP catalyze processive poly-alanine syn-
thesis in a reconstituted ribosome-associated quali-
ty control system, Nucleic Acids Res., 49, 8355-8369,
https://doi.org/10.1093/nar/gkab589.
54. Milon, P., Konevega, A. L., Peske, F., Fabbretti, A.,
Gualerzi, C. O., and Rodnina, M. V. (2007) Transient
kinetics, fluorescence, and FRET in studies of initia-
tion of translation in bacteria, Methods Enzymol., 430,
1-30, https://doi.org/10.1016/S0076-6879(07)30001-3.
55. Marina, V. I., Bidzhieva, M., Tereshchenkov, A. G.,
Orekhov, D., Sagitova, V. E., Sumbatyan, N. V.,
Tashlitsky, V. N., Ferberg, A. S., Maviza, T. P.,
Kasatsky, P., Tolicheva, O., Paleskava, A., Polshakov,
V. I., Osterman, I. A., Dontsova, O. A., Konevega,
A. L., and Sergiev, P. V. (2024) An easy tool to mon-
itor the elemental steps of in vitro translation via
gel electrophoresis of fluorescently labeled small
peptides, RNA, 30, 298-307, https://doi.org/10.1261/
rna.079766.123.
56. Osterman, I.A., Wieland,M., Maviza, T.P., Lashkevich,
K. A., Lukianov, D. A., Komarova, E. S., Zakalyukina,
Y.V., Buschauer,R., Shiriaev, D.I., Leyn, S.A., Zlamal,
J.E., Biryukov, M.V., Skvortsov, D.A., Tashlitsky, V.N.,
Polshakov, V. I., Cheng, J., Polikanov, Y. S., Bogdanov,
A. A., Osterman, A. L., Dmitriev, S. E., et al. (2020)
Tetracenomycin X inhibits translation by binding
within the ribosomal exit tunnel, Nat. Chem. Biol.,
16, 1071-1077, https://doi.org/10.1038/s41589-020-
0578-x.
57. Batool,Z., Pavlova, J.A., Paranjpe, M.N., Tereshchen-
kov, A.G., Lukianov, D.A., Osterman, I.A., Bogdanov,
A. A., Sumbatyan, N. V., and Polikanov, Y. S. (2024)
Berberine analog of chloramphenicol exhibits a dis-
tinct mode of action and unveils ribosome plasticity,
Structure, 32, 1429-1442.e1426, https://doi.org/10.1016/
j.str.2024.06.013.
58. Pichkur, E. B., Paleskava, A., Tereshchenkov, A. G.,
Kasatsky,P., Komarova, E.S., Shiriaev, D.I., Bogdanov,
A. A., Dontsova, O. A., Osterman, I. A., Sergiev, P. V.,
Polikanov, Y. S., Myasnikov, A. G., and Konevega,
A. L. (2020) Insights into the improved macrolide
inhibitory activity from the high-resolution cryo-EM
structure of dirithromycin bound to the E. coli 70S
ribosome, RNA, 26, 715-723, https://doi.org/10.1261/
rna.073817.119.
59. Grossman, T. H., Starosta, A. L., Fyfe, C., O’Brien, W.,
Rothstein, D. M., Mikolajka, A., Wilson, D. N., and
Sutcliffe, J. A. (2012) Target- and resistance-based
mechanistic studies with TP-434, a novel fluorocy-
cline antibiotic, Antimicrob. Agents Chemotherapy,
56, 2559-2564, https://doi.org/10.1128/AAC.06187-11.
60. Osterman, I. A., Khabibullina, N. F., Komarova, E. S.,
Kasatsky,P., Kartsev, V.G., Bogdanov, A.A., Dontsova,
O. A., Konevega, A. L., Sergiev, P. V., and Polikanov,
Y. S. (2017) Madumycin II inhibits peptide bond for-
mation by forcing the peptidyl transferase center into
an inactive state, Nucleic Acids Res., 45, 7507-7514,
https://doi.org/10.1093/nar/gkx413.
61. Weisblum, B., and Demohn, V. (1969) Erythromy-
cin-inducible resistance in Staphylococcus aureus:
survey of antibiotic classes involved, J.Bacteriol., 98,
447-452, https://doi.org/10.1128/jb.98.2.447-452.1969.
62. Long, K.S., Poehlsgaard,J., Kehrenberg,C., Schwarz,S.,
and Vester, B. (2006) The Cfr rRNA methyltransferase
confers resistance to phenicols, lincosamides, ox-
azolidinones, pleuromutilins, and streptogramin A
antibiotics, Antimicrob. Agents Chemotherapy,
50, 2500-2505, https://doi.org/10.1128/AAC.00131-06.