
METELEV, BOGDANOV1564
BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
itors of eukaryotic protein synthesis, Biochemis-
try (Moscow), 85, 1389-1421, https://doi.org/10.1134/
S0006297920110097.
41. Safdari, H. A., Morici, M., Sanchez-Castro, A., Dal-
lapè,A., Paternoga,H., Giuliodori, A.M., Fabbretti,A.,
Milón, P., and Wilson, D. N. (2025) The translation
inhibitors kasugamycin, edeine and GE81112 target
distinct steps during 30S initiation complex forma-
tion, Nat. Commun., 16, 2470, https://doi.org/10.1038/
s41467-025-57731-8.
42. Polikanov, Y. S., Osterman, I. A., Szal, T., Tashlitsky,
V. N., Serebryakova, M. V., Kusochek, P., Bulkley, D.,
Malanicheva, I.A., Efimenko, T.A., Efremenkova, O.V.,
Konevega, A.L., Shaw, K.J., Bogdanov, A.A., Rodnina,
M.V., Dontsova, O.A., Mankin, A.S., Steitz, T.A., and
Sergiev, P. V. (2014) Amicoumacin A inhibits transla-
tion by stabilizing mRNA interaction with the ribo-
some, Mol. Cell, 56, 531-540, https://doi.org/10.1016/
j.molcel.2014.09.020.
43. Maksimova, E.M., Vinogradova, D.S., Osterman, I.A.,
Kasatsky, P. S., Nikonov, O. S., Milón, P., Dontsova,
O. A., Sergiev, P. V., Paleskava, A., and Konevega,
A. L. (2021) Multifaceted mechanism of amicou-
macin A inhibition of bacterial translation front,
Microbiol., 12, 8857, https://doi.org/10.3389/fmicb.
2021.618857.
44. Prokhorova, I. V., Akulich, K. A., Makeeva, D. S.,
Osterman, I. A., Skvortsov, D. A., Sergiev, P. V.,
Dontsova, O. A., Yusupova, G., Yusupov, M. M., and
Dmitriev, S.E. (2016) AmicoumacinA induces cancer
cell death by targeting the eukaryotic ribosome, Sci.
Rep., 6, 27720, https://doi.org/10.1038/srep27720.
45. Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y.,
Bhat, S., Merrick, W. C., Green, R., Shen, B., and
Liu, J. O. (2010) Inhibition of eukaryotic translation
elongation by cycloheximide and lactimidomycin,
Nat Chem Biol., 6, 209-217, https://doi.org/10.1038/
nchembio.304.
46. Zgadzay, Y., Kolosova, O., Stetsenko, A., Wu, C.,
Bruchlen, D., Usachev, K., Validov, S., Jenner, L.,
Rogachev, A., Yusupova, G., Sachs, M. S., Guskov, A.,
and Yusupov, M. (2022) E-site drug specificity of the
human pathogen ribosome, Sci. Adv., 8, eabn1062,
https://doi.org/10.1126/sciadv.abn1062.
47. Shen, L. D., Su, Z. M., Yang, K. L., Wu, C., Becker, T.,
Bell-Pedersen, D., Zhang, J. J., and Sachs, M. S.
(2021) Structure of the translating Neurospora ribo-
some arrested by cycloheximide, Proc. Natl. Acad.
Sci. USA, 118, e2111862118, https://doi.org/10.1073/
pnas.2111862118.
48. Goldstein, M., Wang, Y., Byju, S., Mohanty, U., and
Whitford, P. S. (2025) Characterization of a poten-
tial antibiotic target site on the ribosome, bioRxiv,
https://doi.org/10.1101/2025.05.02.651724.
49. Wright,G., Kaur,M., Travin,D., Berger,M., Jangra,M.,
Morici, M., Safdari, H. A., Klepacki, D., Wang, W.,
Cook, M., Chou, S., Guitor, A., Koteva, K., Xu, M.,
Ejim, L., Macneil, L., Vázquez-Laslop, N., Mankin, A.,
and Wilson, D. (2025) A natural depsipeptide
antibiotic that targets the E site of the bacteria
ribosome, Res. Sq., https://doi.org/10.21203/rs.3.rs-
6925047/v1.
50. Golubev, A.A., Validov, Sh.Z., Usachev, K.S., and Yu-
supov, M. M. (2019) Elongation factor P: new mech-
anisms of function and an evolutionary diversity of
translation regulation, Mol. Biol., 53, 501-512, https://
doi.org/10.1134/S0026893319040034.
51. Blaha, G. R., Stanley, R. E., and Steitz, T. A. (2009)
Formation of the first peptide bond: the structure
of EF-P bound to the 70S ribosome, Science, 325,
966-970, https://doi.org/10.1126/science.1175800.
52. Wiechert, F., Unbehaun, A., Sprink, Th., Seibel, H.,
Bürger, J., Loerke, J., Mielke, Th., Diebolder, C.,
Schacherl, M., and Spahn, C. (2025) Visualizing the
modification landscape of the human 60S ribosom-
al subunit at close to atomic resolution, Nucleic Ac-
ids Res., 53, gkae1191, https://doi.org/10.1093/nar/
gkae1191.
53. Li, L., Rybak, M. Y., Lin, J., and Gagnon, M. G. (2024)
The ribosome termination complex remodels re-
lease factor RF3 and ejects GDP, Nat. Struct. Mol.
Biol., 31, 1909-1920, https://doi.org/10.1038/s41594-
024-01360-0.
54. Loveland, A. B., Koh, C. S., Ganesan, R., Jacobson, A.,
and Korostelev, A. A. (2024) Structural mechanism
of angiogenin activation by the ribosome, Na-
ture, 630, 769-776, https://doi.org/10.1038/s41586-
024-07508-8.
55. Simsek, D., Tiu, D. C., Flynn, R. A., Byeon, G. W.,
Leppek, K., Xu, A. F., Chang, H. Y., and Barna, M.
(2017) The mammalian ribo-interactome reveals
ribosome functional diversity and heterogene-
ity, Cell, 169, 1051-1065.e18, https://doi.org/10.1016/
j.cell.2017.05.022.
56. Irvin, J. D., and Hardesty, B. (1972) Binding of ami-
noacyl transfer ribonucleic acid synthetases to ri-
bosomes from rabbit reticulocytes, Biochemistry,
11, 1915-1920, https://doi.org/10.1021/bi00760a028.
57. Raina, M., Elgamal,S., Santangelo, T. J., and Ibba, M.
(2012) Association of a multi-synthetase complex
with translating ribosomes in the archaeon Ther-
mococcus kodakarensis, FEBS Lett., 586, 2232-2238,
https://doi.org/10.1016/j.febslet.2012.05.039.
58. Godinic-Mikulcic, V., Jaric,J., Greber, B.J., Franke,V.,
Hodnik, V., Anderluh, G., Ban, N., and Weygand-
Durasevic, I. (2014) Archaeal aminoacyl-tRNA syn-
thetases interact with the ribosome to recycle tRNAs,
Nucleic Acids Res., 42, 5191-5201, https://doi.org/
10.1093/nar/gku164.
59. Mleczko, A. M., Celichowski, P., and Bakowska-
Zywicka, K. (2018) Transfer RNA-derived frag-
ments target and regulate ribosome-associated