
INHIBITION OF PROTEIN BIOSYNTHESIS BY PEPTIDES 1551
BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
and Innis, C. A. (2016) Structure of the mammalian
antimicrobial peptide Bac7(1-16) bound within the
exit tunnel of a bacterial ribosome, Nucleic Acids Res.,
44, 2429, https://doi.org/10.1093/NAR/GKV1545.
53. Florin,T., Maracci,C., Graf,M., Karki,P., Klepacki,D.,
Berninghausen,O., Beckmann,R., Vázquez-Laslop,N.,
Wilson, D.N., Rodnina, M.V., and Mankin, A.S. (2017)
An antimicrobial peptide that inhibits translation
by trapping release factors on the ribosome, Nat.
Struct. Mol. Biol., 24, 752-757, https://doi.org/10.1038/
nsmb.3439.
54. Niidome,T., Mihara,H., Oka,M., Hayashi,T., Saiki,T.,
Yoshida,K., and Aoyagi,H. (1998) Structure and prop-
erty of model peptides of proline/arginine-rich region
in bactenecin 5, Peptide Res., 51, 337-345, https://
doi.org/10.1111/J.1399-3011.1998.TB01224.X.
55. Ohgita, T., Takechi-Haraya, Y., Okada, K., Matsui, S.,
Takeuchi, M., Saito, C., Nishitsuji, K., Uchimura, K.,
Kawano, R., Hasegawa, K., Sakai-Kato, K., Akaji, K.,
Izutsu, K.I., and Saito, H. (2020) Enhancement of di-
rect membrane penetration of arginine-rich peptides
by polyproline II helix structure, Biochim. Biophys.
Acta, 1862, 183403, https://doi.org/10.1016/j.bbamem.
2020.183403.
56. Shinnar, A. E., Butler, K. L., and Park, H. J. (2003)
Cathelicidin family of antimicrobial peptides: Pro-
teolytic processing and protease resistance, Bioorg.
Chem., 31, 425-436, https://doi.org/10.1016/S0045-
2068(03)00080-4.
57. Guida, F., Benincasa, M., Zahariev, S., Scocchi, M.,
Berti, F., Gennaro, R., and Tossi, A. (2015) Effect of
size and N-terminal residue characteristics on bacte-
rial cell penetration and antibacterial activity of the
proline-rich peptide Bac7, J. Med. Chem., 58, 1195-
1204, https://doi.org/10.1021/JM501367P.
58. Podda, E., Benincasa, M., Pacor, S., Micali, F., Mat-
tiuzzo, M., Gennaro, R., and Scocchi, M. (2006) Dual
mode of action of Bac7, a proline-rich antibacterial
peptide, Biochim. Biophys. Acta, 1760, 1732-1740,
https://doi.org/10.1016/j.bbagen.2006.09.006.
59. Koch, P., Schmitt, S., Heynisch, A., Gumpinger, A.,
Wüthrich, I., Gysin, M., Shcherbakov, D., Hobbie,
S. N., Panke, S., and Held, M. (2022) Optimization of
the antimicrobial peptide Bac7 by deep mutational
scanning, BMC Biol., 20, 114, https://doi.org/10.1186/
s12915-022-01304-4.
60. Benincasa, M., Scocchi, M., Podda, E., Skerlavaj, B.,
Dolzani, L., and Gennaro, R. (2004) Antimicrobi-
al activity of Bac7 fragments against drug-resistant
clinical isolates, Peptides, 25, 2055-2061, https://
doi.org/10.1016/J.PEPTIDES.2004.08.004.
61. Tokunaga, Y., Niidome, T., Hatakeyama, T., and
Aoyagi, H. (2001) Antibacterial activity of bactene-
cin 5 fragments and their interaction with phospho-
lipid membranes, J.Peptide Sci., 7, 297-304, https://
doi.org/10.1002/PSC.317.
62. Mardirossian, M., Barrière, Q., Timchenko, T.,
Müller, C., Pacor, S., Mergaert, P., Scocchi, M., and
Wilsona, D.N. (2018) Fragments of the nonlytic pro-
line-rich antimicrobial peptide Bac5 kill Escherichia
coli cells by inhibiting protein synthesis, Antimi-
crob. Agents Chemother., 62, https://doi.org/10.1128/
AAC.00534-18.
63. Mardirossian, M., Sola, R., Degasperi, M., and
Scocchi, M. (2019) Search for shorter portions of
the proline-rich antimicrobial peptide fragment
Bac5(1-25) that retain antimicrobial activity by block-
ing protein synthesis, ChemMedChem, 14, 343-348,
https://doi.org/10.1002/cmdc.201800734.
64. Graf,M., Huter, P., Maracci,C., Peterek, M., Rodnina,
M.V., and Wilson, D.N. (2018) Visualization of trans-
lation termination intermediates trapped by the
Apidaecin 137 peptide during RF3-mediated recy-
cling of RF1, Nat. Commun., 9, 3053, https://doi.org/
10.1038/s41467-018-05465-1.
65. Baliga, C., Brown, T. J., Florin, T., Colon, S., Shah, V.,
Skowron, K. J., Kefi, A., Szal, T., Klepacki, D., Moore,
T. W., Vázquez-Laslop, N., and Mankin, A. S. (2021)
Charting the sequence-activity landscape of peptide
inhibitors of translation termination, Proc. Natl. Acad.
Sci. USA, 118, e2026465118, https://doi.org/10.1073/
PNAS.2026465118.
66. Koller, T.O., Morici,M., Berger,M., Safdari, H.A., Lele,
D.S., Beckert,B., Kaur, K.J., and Wilson, D.N. (2023)
Structural basis for translation inhibition by the gly-
cosylated drosocin peptide, Nat. Chem. Biol., 19, 1072-
1081, https://doi.org/10.1038/s41589-023-01293-7.
67. Bulet, P., Hetru, C., Dimarcq, J. L., and Hoffmann, D.
(1999) Antimicrobial peptides in insects, structure
and function, Dev. Compar. Immunol., 23, 329-344,
https://doi.org/10.1016/S0145-305X(99)00015-4.
68. Gobbo,M., Biondi,L., Filira,F., Gennaro,R., Beninca-
sa,M., Scolaro,B., and Rocchi,R. (2002) Antimicrobial
peptides: synthesis and antibacterial activity of lin-
ear and cyclic drosocin and apidaecin 1b analogues,
J. Med. Chem., 45, 4494-4504, https://doi.org/10.1021/
jm020861d.
69. Chan, K. H., Petrychenko, V., Mueller, C., Maracci, C.,
Holtkamp,W., Wilson, D.N., Fischer,N., and Rodnina,
M.V. (2020) Mechanism of ribosome rescue by alter-
native ribosome-rescue factor B, Nat. Commun., 11,
4106, https://doi.org/10.1038/s41467-020-17853-7.
70. Chadani,Y., Ono,K., Kutsukake,K., and Abo,T. (2011)
Escherichia coli YaeJ protein mediates a novel ribo-
some-rescue pathway distinct from SsrA- and Ar-
fA-mediated pathways, Mol. Microbiol., 80, 772-785,
https://doi.org/10.1111/j.1365-2958.2011.07607.x.
71. Adamski, F. M., McCaughan, K. K., Jørgensen, F.,
Kurland, C.G., and Tate, W. P. (1994) The concentra-
tion of polypeptide chain release factors 1 and 2 at
different growth rates of Escherichia coli, J.Mol. Biol.,
238, 302-308, https://doi.org/10.1006/jmbi.1994.1293.