
LOMOV et al.1480
BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
to homologous recombination by promoting 53BP1
dephosphorylation, Cell Rep., 18, 520-532, https://
doi.org/10.1016/j.celrep.2016.12.042.
94. Ochs, F., Karemore, G., Miron, E., Brown, J., Sed-
lackova,H., Rask, M.-B., Lampe,M., Buckle,V., Scher-
melleh,L., Lukas,J., and Lukas,C. (2019) Stabilization
of chromatin topology safeguards genome integrity,
Nature, 574, 571-574, https://doi.org/10.1038/s41586-
019-1659-4.
95. Cruz-García, A., López-Saavedra, A., and Huertas, P.
(2014) BRCA1 accelerates CtIP-mediated DNA-end re-
section, Cell Rep., 9, 451-459, https://doi.org/10.1016/
j.celrep.2014.08.076.
96. Yu, X., Fu, S., Lai, M., Baer, R., and Chen, J. (2006)
BRCA1 ubiquitinates its phosphorylation-dependent
binding partner CtIP, Genes. Dev., 20, 1721-1726,
https://doi.org/10.1101/gad.1431006.
97. Ceppi, I., Dello Stritto, M. R., Mütze, M., Braunshi-
er,S., Mengoli,V., Reginato,G., Võ, H.M.P., Jimeno,S.,
Acharya,A., Roy,M., Sanchez,A., Halder,S., Howard,
S. M., Guérois, R., Huertas, P., Noordermeer, S. M.,
Seidel,R., and Cejka,P. (2024) Mechanism of BRCA1–
BARD1 function in DNA end resection and DNA
protection, Nature, 634, 492-500, https://doi.org/
10.1038/s41586-024-07909-9.
98. Densham, R.M., Garvin, A.J., Stone, H.R., Strachan,J.,
Baldock, R. A., Daza-Martin, M., Fletcher, A., Blair-
Reid, S., Beesley, J., Johal, B., Pearl, L. H., Neely, R.,
Keep, N.H., Watts, F. Z., and Morris, J. R. (2016) Hu-
man BRCA1-BARD1 ubiquitin ligase activity coun-
teracts chromatin barriers to DNA resection, Nat.
Struct. Mol. Biol., 23, 647-655, https://doi.org/10.1038/
nsmb.3236.
99. Bohgaki,M., Bohgaki,T., El Ghamrasni,S., Srikumar,T.,
Maire, G., Panier, S., Fradet-Turcotte, A., Stewart,
G. S., Raught, B., Hakem, A., and Hakem, R. (2013)
RNF168 ubiquitylates 53BP1 and controls its response
to DNA double-strand breaks, Proc. Natl. Acad. Sci.
USA, 110, 20982-20987, https://doi.org/10.1073/pnas.
1320302111.
100. Markert,J., Zhou,K., and Luger,K. (2021) SMARCAD1
is an ATP-dependent histone octamer exchange factor
with de novo nucleosome assembly activity, Sci. Adv.,
7, eabk2380, https://doi.org/10.1126/sciadv.abk2380.
101. Lo, C.S.Y., van Toorn,M., Gaggioli, V., Paes Dias,M.,
Zhu, Y., Manolika, E. M., Zhao, W., van der Does, M.,
Mukherjee,C., Souto Gonçalves, J.G.S.C., van Royen,
M. E., French, P. J., Demmers, J., Smal, I., Lans, H.,
Wheeler, D., Jonkers, J., Chaudhuri, A. R., Marteijn,
J. A., and Taneja, N. (2021) SMARCAD1-mediated ac-
tive replication fork stability maintains genome in-
tegrity, Sci. Adv., 7, eabe7804, https://doi.org/10.1126/
sciadv.abe7804.
102. Vergara, X., Manjón, A. G., de Haas, M., Morris, B.,
Schep,R., Leemans,C., Friskes,A., Beijersbergen, R.L.,
Sanders, M. A., Medema, R. H., and van Steensel, B.
(2024) Widespread chromatin context-dependencies
of DNA double-strand break repair proteins, Nat.
Commun., 15, 5334, https://doi.org/10.1038/s41467-
024-49232-x.
103. Arnoult, N., Correia, A., Ma, J., Merlo, A., Garcia-
Gomez, S., Maric, M., Tognetti, M., Benner, C. W.,
Boulton, S.J., Saghatelian,A., and Karlseder,J. (2017)
Regulation of DNA repair pathway choice in S and
G2 phases by the NHEJ inhibitor CYREN, Nature, 549,
548-552, https://doi.org/10.1038/nature24023.
104. Xie,L., Bowman, M.E., Louie, G.V., Zhang,C., Ardejani,
M. S., Huang, X., Chu, Q., Donaldson, C. J., Vaughan,
J.M., Shan,H., Powers, E.T., Kelly, J.W., Lyumkis,D.,
Noel, J. P., and Saghatelian, A. (2023) Biochemistry
and protein interactions of the CYREN microprotein,
Biochemistry, 62, 3050-3060, https://doi.org/10.1021/
acs.biochem.3c00397.
105. Kieffer, S. R., and Lowndes, N. F. (2022) Immedi-
ate-early, early, and late responses to DNA double
stranded breaks, Front. Genet., 13, 793884, https://
doi.org/10.3389/fgene.2022.793884.
106. Ortega, R., Bitler, B. G., and Arnoult, N. (2025) Mul-
tiple functions of PARP1 in the repair of DNA dou-
ble strand breaks, DNA Repair (Amst), 152, 103873,
https://doi.org/10.1016/j.dnarep.2025.103873.
107. Yamashita, S., Tanaka, M., Ida, C., Kouyama, K.,
Nakae,S., Matsuki,T., Tsuda,M., Shirai,T., Kamemu-
ra,K., Nishi,Y., Moss,J., and Miwa,M. (2022) Physio-
logical levels of poly(ADP-ribose) during the cell cycle
regulate HeLa cell proliferation, Exp. Cell Res., 417,
113163, https://doi.org/10.1016/j.yexcr.2022.113163.
108. Liu,C., Vyas,A., Kassab, M.A., Singh, A.K., and Yu,X.
(2017) The role of poly ADP-ribosylation in the first
wave of DNA damage response, Nucleic Acids Res.,
45, 8129-8141, https://doi.org/10.1093/nar/gkx565.
109. Wang, M., Wu, W., Wu, W., Rosidi, B., Zhang, L.,
Wang, H., and Iliakis, G. (2006) PARP-1 and Ku com-
pete for repair of DNA double strand breaks by dis-
tinct NHEJ pathways, Nucleic Acids Res., 34, 6170-
6182, https://doi.org/10.1093/nar/gkl840.
110. Caron, M.-C., Sharma, A.K., O’Sullivan,J., Myler, L.R.,
Ferreira, M. T., Rodrigue, A., Coulombe, Y., Ethier, C.,
Gagné, J.-P., Langelier, M.-F., Pascal, J. M., Finkelstein,
I. J., Hendzel, M. J., Poirier, G. G., and Masson, J.-Y.
(2019) Poly(ADP-ribose) polymerase-1 antagonizes
DNA resection at double-strand breaks, Nat. Com-
mun., 10, 2954, https://doi.org/10.1038/s41467-019-
10741-9.
111. Lodovichi, S., Quadri, R., Sertic, S., and Pellicioli, A.
(2023) PARylation of BRCA1 limits DNA break resec-
tion through BRCA2 and EXO1, Cell Rep., 42, 112060,
https://doi.org/10.1016/j.celrep.2023.112060.
112. Blackford, A. N., and Stucki, M. (2020) How cells
respond to DNA breaks in mitosis, Trends Bio-
chem. Sci., 45, 321-331, https://doi.org/10.1016/j.tibs.
2019.12.010.