
DUNAEVSKY et al.1464
BIOCHEMISTRY (Moscow) Vol. 90 No. 11 2025
11. Seong,W., Han, G.H., Lim, H.S., Baek, J.I., Kim, S.J.,
Kim, D., Kim, S. K., Lee, H., Kim, H., Lee, S. G., and
Lee, D. H. (2020) Adaptive laboratory evolution of
Escherichia coli lacking cellular byproduct formation
for enhanced acetate utilization through compen-
satory ATP consumption, Metab. Eng. Commun., 62,
249-259, https://doi.org/10.1016/j.ymben.2020.09.005.
12. Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh,
T.K., Schneider,D., Lenski, R.E., and Kim, J.F. (2009)
Genome evolution and adaptation in a long-term
experiment with Escherichia coli, Nature, 461, 1243-
1247, https://doi.org/10.1038/nature08480.
13. Good, B., McDonald, M., Barrick, J. E., Lenski, R. E.,
and Desai, M. M. (2017) The dynamics of molecu-
lar evolution over 60,000 generations, Nature, 551,
45-50, https://doi.org/10.1038/nature24287.
14. Tenaillon, O., Barrick, J. E., Ribeck, N., Deatherage,
D. E., Blanchard, J. L., Dasgupta, A., Wu, G. C., Wiel-
goss,S., Cruveiller,S., Médigue,C., Schneider, D., and
Lenski, R.E. (2016) Tempo and mode of genome evo-
lution in a 50,000-generation experiment, Nature, 536,
165-170, https://doi.org/10.1038/nature18959.
15. Dallinger, W. H. (1887) The president’s address,
J.Royal Microscopical Soc. Trans. Soc., 10, 191-192.
16. Barrick, J. E., Deatherage, D. E., and Lenski, R. E.
(2020) A test of the repeatability of measurements
of relative fitness in the long-term evolution exper-
iment with Escherichia coli, in Evolution in Action:
Past, Present and Future (Banzhaf, W., Cheng, B. H.
C., Deb, K., Holekamp, K. E., Lenski, R. E., Ofria, C.,
Pennock, R. T., Punch, W. F., and Whittaker, D. J.,
eds) Springer, Cham, Switzerland, pp. 77-89, https://
doi.org/10.1007/978-3-030-39831-6_8.
17. Lang, G. I., Rice, D., Hickman, M., Sodergren, E.,
Weinstock, G.M., Botstein,D., and Desai, M.M. (2013)
Pervasive genetic hitchhiking and clonal interference
in forty evolving yeast populations, Nature, 500,
571-574, https://doi.org/10.1038/nature12344.
18. Maddamsetti,R., Hatcher, P.J., Green, A.G., Williams,
B.L., Marks, D.S., and Lenski, R.E. (2017) Core genes
evolve rapidly in the long-term evolution experiment
with Escherichia coli, Genome Biol. Evol., 9, 1072-
1083, https://doi.org/10.1093/gbe/evx064.
19. Philippe,N., Crozat,E., Lenski, R.E., and Schneider,D.
(2007) Evolution of global regulatory networks
during a long-term experiment with Escherichia
coli, BioEssays, 29, 846-860, https://doi.org/10.1002/
bies.20629.
20. Saxer, G., Krepps, M. D., Merkley, E. D., Ansong, C.,
Deatherage Kaiser, B. L., Valovska, M-T., Ristic, N.,
Yeh, P. T., Prakash, V. P., Leiser, O. P., Nakhleh, L.,
Gibbons, H.S., Kreuzer, H. W., and Shamoo,Y. (2014)
Mutations in global regulators lead to metabolic se-
lection during adaptation to complex environments,
PLoS Genet., 10, e1004872, https://doi.org/10.1371/
journal.pgen.1004872.
21. Veeravalli, K., Boyd, D., Iverson, B. L., Beckwith, J.,
and Georgiou, G. (2011) Laboratory evolution of
glutathione biosynthesis reveals natural compensa-
tory pathways, Nat. Chem. Biol., 7, 101-105, https://
doi.org/10.1038/nchembio.499.
22. Elena, S. F., and Lenski, R. E. (2003) Evolution exper-
iments with microorganisms: the dynamics and ge-
netic bases of adaptation, Nat Rev., 4, 457-469, https://
doi.org/10.1038/nrg1088.
23. Maeda, T., Iwasawa, J., Kotani, H., Sakata, N.,
Kawada, M., Horinouchi, T., Sakai, A., Tanabe, K.,
and Furusawa, C. (2020) High-throughput labora-
tory evolution reveals evolutionary constraints in
Escherichia coli, Nat. Commun., 11, 5970, https://
doi.org/10.1038/s41467-020-19713-w.
24. Du,B., Olson, C.A., Sastry, A.V., Fang,X., Phaneuf, P.V.,
Chen,K., Wu,M., Szubin,R., Xu,S., Gao,Y., Hefner,Y.,
Feist, A.M., and Palsson, B.O. (2020) Adaptive labora-
tory evolution of Escherichia coli under acid stress,
Microbiology, 166, 141-148, https://doi.org/10.1099/
mic.0.000867.
25. Lu, Q., Zhou, X.L., and Liu, J.Z. (2022) Adaptive lab-
oratory evolution and shuffling of Escherichia coli to
enhance its tolerance and production of astaxanthin,
Biotechnol. Biofuels, 15, 17, https://doi.org/10.1186/
s13068-022-02118-w.
26. Kudryavtseva, O. A., Safina, K. R., Vakhrusheva,
O. A., Logacheva, M. D., Penin, A. A., Neretina, T. V.,
Moskalenko, V. N., Glagoleva, E. S., Bazykin, G. A.,
and Kondrashov, A. S. (2019) Genetics of adaptation
of the ascomycetous fungus Podospora anserina to
submerged cultivation, Genome Biol. Evol., 11, 2807-
2817, https://doi.org/10.1093/gbe/evz194.
27. Fisher, K. J., and Lang, G. I. (2016) Experimental
evolution in fungi: an untapped resource, Fun-
gal Genet. Biol., 94, 88-94, https://doi.org/10.1016/
j.fgb.2016.06.007.
28. Gladieux, P., Ropars, J., Badouin, H., Branca, A.,
Aguileta, G., de Vienne, D. M., de la Vega, R. R. C.,
Branco, S., and Giraud, T. (2014) Fungal evolution-
ary genomics provides insight into the mechanisms
of adaptive divergence in eukaryotes, Mol. Ecol., 23,
753-773, https://doi.org/10.1111/mec.12631.
29. McDonald, M. J., Rice, D. P., and Desai, M. M. (2016)
Sex speeds adaptation by altering the dynamics of
molecular evolution, Nature, 531, 233-236, https://
doi.org/10.1038/nature17143.
30. Schoustra, S. E., Debets, A. J. M., Slakhorst, M., and
Hoekstra, R. F. (2007) Mitotic recombination acceler-
ates adaptation in the fungus Aspergillus nidulans,
PLoS Genet., 3, e68, https://doi.org/10.1371/journal.
pgen.0030068.
31. McDonald, M.J. (2019) Microbial experimental evolu-
tion – a proving ground for evolutionary theory and
a tool for discovery, EMBO Rep., 20, e46992, https://
doi.org/10.15252/embr.201846992.