
SKRYABIN et al.1386
BIOCHEMISTRY (Moscow) Vol. 90 No. 10 2025
4. Welsh, J. A., Goberdhan, D. C. I., O’Driscoll, L., Buzas,
E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D.,
Driedonks, T. A. P., and Erdbrügger, U. (2024) Mini-
mal information for studies of extracellular vesicles
(MISEV2023): from basic to advanced approaches,
J.Extracell. Vesicle, 13, e12404, https://doi.org/10.1002/
jev2.12404.
5. Vogel, R., Coumans, F. A. W., Maltesen, R. G., Böing,
A.N., Bonnington, K.E., Broekman, M.L., Broom, M.F.,
Buzás, E.I., Christiansen,G., Hajji,N., Kristensen, S.R.,
Kuehn, M. J., Lund, S. M., Maas, S. L., Nieuwland, R.,
Osteikoetxea, X., Schnoor, R., Scicluna, B. J., Sham-
brook, M., de Vrij, J., and Pedersen, S. (2016) A stan-
dardized method to determine the Concentration
of extracellular vesicles using tunable resistive
pulse sensing, J. Extracell. Vesicles, 5, 31242, https://
doi.org/10.3402/jev.v5.31242.
6. Hartjes, T.A., Mytnyk,S., Jenster, G.W., van Steijn,V.,
and van Royen, M. E. (2019) Extracellular vesicle
quantification and characterization: common meth-
ods and emerging approaches, Bioengineering, 6, 7,
https://doi.org/10.3390/bioengineering6010007.
7. Jeppesen, D. K., Zhang,Q., Franklin, J. L., and Coffey,
R. J. (2023) Extracellular vesicles and nanoparticles:
emerging complexities, Trends Cell Biol., 33, 667-681,
https://doi.org/10.1016/j.tcb.2023.01.002.
8. Willms, E., Cabañas, C., Mäger, I., Wood, M. J., and
Vader, P. (2018) Extracellular vesicle heterogeneity:
subpopulations, isolation techniques, and diverse
functions in cancer progression, Front. Immunol.,
9, 738, https://doi.org/10.3389/fimmu.2018.00738.
9. Brennan,K., Martin,K., FitzGerald, S.P., O’Sullivan,J.,
Wu,Y., Blanco, A., Richardson,C., and McGee, M.M.
(2020) A comparison of methods for the isola-
tion and separation of extracellular vesicles from
protein and lipid particles in human serum, Sci.
Rep., 10, 1039, https://doi.org/10.1038/s41598-020-
57497-7.
10. Xu, R., Rai, A., Chen, M., Suwakulsiri, W., Greening,
D.W., and Simpson, R.J. (2018) Extracellular vesicles
in cancer – implications for future improvements in
cancer care, Nat. Rev. Clin. Oncol., 15, 617-638, https://
doi.org/10.1038/s41571-018-0036-9.
11. Comfort, N., Cai, K., Bloomquist, T. R., Strait, M. D.,
Ferrante, A.W.J., and Baccarelli, A.A. (2021) Nanopar-
ticle tracking analysis for the quantification and size
determination of extracellular vesicles, J. Vis. Exp.,
169, e62447, https://doi.org/10.3791/62447.
12. Maas, S. L. N., Breakefield, X. O., and Weaver, A. M.
(2017) Extracellular vesicles: unique intercellular de-
livery vehicles, Trends Cell Biol., 3, 172-188, https://
doi.org/10.1016/j.tcb.2016.11.003.
13. Tian, Y., Ma, L., Gong, M., Su, G., Zhu, S., Zhang, W.,
Wang, S., Li, Z., Chen, C., Li, L., Wu, L., and Yan, X.
(2018) Protein profiling and sizing of extracellular
vesicles from colorectal cancer patients via flow cy-
tometry, ACS Nano, 12, 671-680, https://doi.org/10.1021/
acsnano.7b07782.
14. Skryabin, G. O., Beliaeva, A. A., Enikeev, A. D.,
Bagrov, D. V., Keremet, A. M., Komelkov, A. V., Elkin,
D. S., Sylantieva, D. M., and Tchevkina, E. M. (2024)
Analysis of miRNAs miR-125a-5p, -27a-5p, -193a-5p,
-135b-5p, -451a, -495-3p and -136-5p in parental ovar-
ian cancer cells and secreted extracellular vesicles,
Adv. Mol. Oncol., 11, 113-123, https://doi.org/10.17650/
2313-805X-2024-11-1-113-123.
15. Skryabin, G. O., Komelkov, A. V., Zhordania, K. I.,
Bagrov, D.V., Enikeev, A. D., Galetsky, S. A., Beliaeva,
A. A., Kopnin, P. B., Moiseenko, A. V., Senkovenko,
A.M., and Tchevkina, E. M. (2024) Integrated miRNA
profiling of extracellular vesicles from uterine aspi-
rates, malignant ascites and primary-cultured ascites
cells for ovarian cancer screening, Pharmaceutics, 16,
902, https://doi.org/10.3390/pharmaceutics16070902.
16. Skryabin, G.O., Vinokurova, S.V., Galetsky, S.A., Elkin,
D. S., Senkovenko, A. M., Denisova, D. A., Komelkov,
A.V., Stilidi, I.S., Peregorodiev, I.N., Malikhova, O.A.,
Imaraliev, O. T., Enikeev, A. D., and Tchevkina, E. M.
(2022) Isolation and characterization of extracellular
vesicles from gastric juice, Cancers (Basel), 14, 3314,
https://doi.org/10.3390/cancers14143314.
17. Théry, C., Amigorena, S., Raposo, G., and Clayton, A.
(2006) Isolation and characterization of exosomes
from cell culture supernatants and biological flu-
ids, Curr. Protoc. Cell Biol., 3, 3.22.1-3.22.29, https://
doi.org/10.1002/0471143030.cb0322s30.
18. Skryabin, G.O., Komelkov, A.V., Galetsky, S.A., Bagrov,
D.V., Evtushenko, E.G., Nikishin, I.I., Zhordaniia, K.I.,
Savelyeva, E. E., Akselrod, M. E., Paianidi, I. G., and
Tchevkina, E. M. (2021) Stomatin is highly expressed
in exosomes of different origin and is a promising
candidate as an exosomal marker, J. Cell Biochem.,
122, 100-115, https://doi.org/10.1002/jcb.29834.
19. Beauregard, G., and Roufogalis, B. D. (1979) Charac-
terization of lipid-protein interactions in acetylcho-
linesterase lipoprotein extracted from bovine eryth-
rocytes, Biochem. J., 179, 109-117, https://doi.org/
10.1042/bj1790109.
20. Escudero-Cernuda,S., Eiro,N., Fraile,M., Vizoso, F.J.,
Fernández-Colomer, B., and Fernández-Sánchez,
M. L. (2025) Limitations and challenges in the char-
acterization of extracellular vesicles from stem
cells and serum, Mikrochim. Acta, 192, 311, https://
doi.org/10.1007/s00604-025-07147-4.
21. Tkach,M., and Théry,C. (2016) Communication by ex-
tracellular vesicles: where we are and where we need
to go, Cell, 164, 1226-1232, https://doi.org/10.1016/
j.cell.2016.01.043.
22. Liao,Z., Jaular, L.M., Soueidi,E., Jouve,M., Muth, D.C.,
Schøyen, T.H., Seale,T., Haughey, N.J., Ostrowski,M.,
Théry,C., and Witwer, K.W. (2019) Acetylcholinester-
ase is not a generic marker of extracellular vesicles,