
KATKOVA et al.1374
BIOCHEMISTRY (Moscow) Vol. 90 No. 10 2025
28. Winkler, B., Riley, M., Peters, M., and Williams, F.
(1992) Chloride is required for fluid transport by
the rabbit corneal endothelium, Am. J. Physiol. Cell
Physiol., 262, C1167-C1174, https://doi.org/10.1152/ajp-
cell.1992.262.5.C1167.
29. Bogner,B., Schroedl,F., Trost,A., Kaser-Eichberger,A.,
Runge,C., Strohmaier,C., Motloch, K.A., Bruckner,D.,
Hauser-Kronberger, C., Bauer, H. C., and Reitsamer,
H. A. (2016) Aquaporin expression and localization
in the rabbit eye, Exp. Eye Res., 147, 20-30, https://
doi.org/10.1016/j.exer.2016.04.013.
30. Nautscher, N., Bauer, A., Steffl, M., and Amselgruber,
W. M. (2016) Comparative morphological evaluation
of domestic animal cornea, Vet. Ophthalmol., 19, 297-
304, https://doi.org/10.1111/vop.12298.
31. Yu, D., Thelin, W. R., Randell, S. H., and Boucher,
R. C. (2012) Expression profiles of aquaporins in
rat conjunctiva, cornea, lacrimal gland and Meibo-
mian gland, Exp. Eye Res., 103, 22-32, https://doi.org/
10.1016/j.exer.2012.07.005.
32. Thiagarajah, J. R., and Verkman, A. S. (2002) Aqua-
porin deletion in mice reduces corneal water perme-
ability and delays restoration of transparency after
swelling, J.Biol. Chem., 277, 19139-19144, https://
doi.org/10.1074/jbc.M202071200.
33. Melnyk,S., and Bollag, W.B. (2024) Aquaporins in the
cornea, Int. J. Mol. Sci., 25, 3748, https://doi.org/10.3390/
ijms25073748.
34. Kuang, K., Yiming, M., Wen, Q., Li, Y., Ma, L.,
Iserovich, P., Verkman, A. S., and Fischbarg, J. (2004)
Fluid transport across cultured layers of corne-
al endothelium from aquaporin-1 null mice, Exp.
Eye Res., 78, 791-798, https://doi.org/10.1016/j.exer.
2003.11.017.
35. Allnoch,L., Beythien,G., Leitzen,E., Becker,K., Kaup,
F. J., Stanelle-Bertram, S., Schaumburg, B., Mounogou
Kouassi,N., Beck,S., Zickler,M., Herder,V., Gabriel,G.,
and Baumgärtner, W. (2021) Vascular inflammation
is associated with loss of aquaporin 1 expression on
endothelial cells and increased fluid leakage in SARS-
CoV-2 infected golden Syrian hamsters, Viruses, 13,
639, https://doi.org/10.3390/v13040639.
36. Dikstein, S., and Maurice, D. M. (1972) The metabol-
ic basis to the fluid pump in the cornea, J. Physi-
ol., 221, 29-41, https://doi.org/10.1113/jphysiol.1972.
sp009736.
37. Sun, X. C., and Bonanno, J. A. (2002) Expression, lo-
calization, and functional evaluation of CFTR in bo-
vine corneal endothelial cells, Am. J. Physiol. Cell
Physiol., 282, C673-C683, https://doi.org/10.1152/
ajpcell.00384.2001.
38. Sun, X. C., Bonanno, J. A., Jelamskii, S., and Xie, Q.
(2000) Expression and localization of NaHCO
3
cotrans-
porter in bovine corneal endothelium, Am. J. Physiol.
Cell Physiol., 279, C1648-C1655, https://doi.org/10.1152/
ajpcell.2000.279.5.c1648.
39. Kuang, K., Li, Y., Wen, Q., Wang, Z., Li, J., Yang, Y.,
Iserovich,P., Reinach, P.S., Sparrow,J., Diecke, F.P., and
Fischbarg,J. (2001) Corneal endothelial NKCC: molec-
ular identification, location, and contribution to fluid
transport, Am. J. Physiol. Cell Physiol., 280, C491-C499,
https://doi.org/10.1152/ajpcell.2001.280.3.c491.
40. Vilas, G. L., Loganathan, S. K., Liu, J., Riau, A. K.,
Young, J. D., Mehta, J. S., and Vithana, E. N. (2013)
Transmembrane water-flux through SLC4A11: a route
defective in genetic corneal diseases, Hum. Mol. Gen-
et., 22, 4579-4590, https://doi.org/10.1093/hmg/ddt307.
41. Myers, E. J., Marshall,A., Jennings, M.L., and Parker,
M. D. (2016) Mouse Slc4a11 expressed in Xenopus
oocytes is an ideally selective H
+
/OH
−
conductance
pathway that is stimulated by rises in intracellu-
lar and extracellular pH, Am. J. Physiol. Cell Physi-
ol., 311, C945-C959, https://doi.org/10.1152/ajpcell.
00259.2016.
42. Kao,L., Azimov,R., Abuladze,N., Newman,D., Kurtz,I.,
and Pushkin, A. (2020) SLC4A11 function: evidence
for H
+
(OH
−
) and NH
3
-H
+
transport, Am. J. Physiol.
Cell Physiol., 318, C392-C405, https://doi.org/10.1152/
ajpcell.00425.2019.
43. Vithana, E. N., Morgan, P., Sundaresan, P., Ebenezer,
N. D., Tan, D. T., Mohamed, M. D., Anand, S., Khine,
K. O., Venkataraman, D., Yong, V. H., Salto- Tellez, M.,
Venkatraman,A., Guo,K., Hemadevi,B., Srinivasan,M.,
Prajna,V., Khine, M., and Casey, J. R. (2008) SLC4A11
mutations in Fuchs endothelial corneal dystrophy,
Hum. Mol. Genet., 17, 656-666, https://doi.org/10.1093/
hmg/ddm337.
44. Roy, S., Praneetha, D. C., and Vendra, V. P. (2015)
Mutations in the corneal endothelial dystrophy-
associated gene SLC4A11 render the cells more vul-
nerable to oxidative insults, Cornea, 34, 668-674,
https://doi.org/10.1097/ICO.0000000000000421.
45. Alka, K., and Casey, J. R. (2018) Molecular pheno-
type of SLC4A11 missense mutants: setting the stage
for personalized medicine in corneal dystrophies,
Hum. Mutat., 39, 676-690, https://doi.org/10.1002/
humu.23401.
46. Li,S., Kim,E., Bonanno, J.A., and Vithana, E.N. (2019)
R125H, W240S, C386R, and V507I SLC4A11 mutations
associated with corneal endothelial dystrophy affect
the transporter function but not trafficking in PS120
cells, Exp. Eye Res., 180, 86-91, https://doi.org/10.1016/j.
exer.2018.12.003.
47. Malhotra,D., Loganathan, S.K., Chiu, A.M., Lukowski,
C.M., Casey, J. R., and Vithana, E. N. (2020) Defective
cell adhesion function of solute transporter, SLC4A11,
in endothelial corneal dystrophies, Hum. Mol. Genet.,
29, 97-116, https://doi.org/10.1093/hmg/ddz259.
48. Wang, Y., Klein, J. D., and Sands, J. M. (2023) Phos-
phatases decrease water and urea permeability in rat
inner medullary collecting ducts, Int. J. Mol. Sci., 24,
6537, https://doi.org/10.3390/ijms24076537.