
SUVOROV et al.982
BIOCHEMISTRY (Moscow) Vol. 90 No. 7 2025
12. Li, J. Z., Wang, J. J., Yoon, I., Cui, B. C., and Shim,
Y. K. (2012) Synthesis of novel long wavelength cat-
ionic chlorins via stereoselective aldol-like condensa-
tion, Bioorg. Med. Chem. Lett., 22, 1846-1849, https://
doi.org/10.1016/j.bmcl.2012.01.088.
13. Brusov, S. S., Koloskova, Y. S., Grin, M. A., Tiganova,
I. G., Pagina, O. E., Tolordava, E. R., Stepanova, T. V.,
Meerovich, G.A., Romanova, Y.M., and Mironov, A.F.
(2014) A novel cationic purpurinimide for photody-
namic inactivation of Pseudomonas aeruginosa bio-
films, Russ. Biother. Zhurn., 13, 59-63.
14. Brusov, S. S., Grin, M. A., Meerovich, G. A., Mironov, A.
F., Romanova, Y. M., and Tiganova, I. G. (2017) Meth-
od of photodynamic therapy of local foci of infection,
Patent RU 2610566.
15. Brusov, S. S., Efremenko, A. V., Lebedeva, V. S.,
Shchepelina, E. Yu., Ponomarev, G. V., Feofanov,
A. V., Mironov, A. F., and Grin, M. A. (2015) Effect of
positive charge in the structure of chlorine series
photosensitizers on photoinduced antitumor activ-
ity, Russ. Biother. Zhurn., 14, 87-92, https://doi.org/
10.17650/1726-9784-2015-14-4-87-92.
16. Tegos, G. P., Anbe, M., Yang, C., Demidova, T. N.,
Satti, M., Mroz, P., Janjua, S., Gad, F., and Hamblin,
M. R. (2006) Protease-stable polycationic photo-
sensitizer conjugates between polyethyleneimine
and chlorin(e
6
) for broad-spectrum antimicrobial
photoinactivation, Antimicrob. Agents Chemoth-
er., 50, 1402-1410, https://doi.org/10.1128/aac.50.4.
1402-1410.2006.
17. Hargus, J. A., Fronczek, F. R., Vicente, M. G. H.,
and Smith, K. M. (2007) Mono‐(L)-aspartylchlorin‐
e
6
, Photochem. Photobiol., 83, 1006-1015, https://
doi.org/10.1111/j.1751-1097.2007.00092.x.
18. Osuka, A., Wada, Y., and Shinoda, S. (1996) Covalent-
ly linked pyropheophorbide dimers as models of the
special pair in the photosynthetic reaction center,
Tetrahedron, 52, 4311-4326, https://doi.org/10.1016/
0040-4020(96)00131-7.
19. Belykh, D. V., Kozlov, A. S., Pylina, Y. I., Khudyaeva,
I. S., and Krasnovsky, A. A. (2019) Copper complex-
es of chlorin derivatives of chlorophyll a as poten-
tial photosensitizers for medical purposes, Mac-
roheterocycles, 12, 68-74, https://doi.org/10.6060/
mhc190128b.
20. Kapinus, V. N., Kaplan, M. A., Yaroslavceva-Isaeva,
E. V., Spichenkova, I. S., and Ivanov, S. A. (2021) Ap-
plication of chlorin E6 photodynamic therapy for
basal cell skin cancer, Res. Pract. Med.J., 8, 33-43,
https://doi.org/10.17709/2410-1893-2021-8-4-3.
21. Zhidomorov, N. Yu., Nazarenko, O. A., Demidov,
V. I., Kustov, A. V., Kukushkina, N. V., Kojfman, O. I.,
Gagua, A.K., Tomilova, I.K., and Berezin, D.B. (2022)
Study of acute toxicity of monocationic derivative
of chlorin e6 – a promising photosensitizer for an-
timicrobial and antitumor photodynamic therapy,
Biomed. Photonics, 11, 23-32, https://doi.org/10.24931/
2413-9432-2022-11-2-23-32.
22. Stranadko, E. F. (2015) The main stages of develop-
ment of photodynamic therapy in Russia, Biomed.
Photonics, 4, 3-10, https://doi.org/10.24931/2413-9432-
2015-4-1-3-10.
23. Slesarevskaya, M.N., and Sokolov, A.V. (2012) Photo-
dynamic therapy: basic principles and mechanisms of
action, Urol. Vedomosti, 2, 24-28.
24. Hak, A., Ali, M. S., Sankaranarayanan, S. A., Shinde,
V. R., and Rengan, A. K. (2023) Chlorin e6: a prom-
ising photosensitizer in photo-based cancer nano-
medicine, ACS Appl. Bio Mater., 6, 349-364, https://
doi.org/10.1021/acsabm.2c00891.
25. Lonin, I.S., Grin, M. A., Lakhina, A.A., and Mironov,
A. F. (2012) Synthesis of chlorophyll a glycoconju-
gates using olefin cross-metathesis, Mendeleev Com-
mun., 22, 157-158, https://doi.org/10.1016/j.mencom.
2012.05.016.
26. Suvorov, N. V., Shchelkova, V. V., Rysanova, E. V.,
Bagatelia, Z. T., Diachenko, D. A., Afaniutin, A. P.,
Vasil’ev, Yu. L., Diachkova, E. Yu., Santana Santos,
I. C., and Grin, M. A. (2024) New cationic chlorin
as potential agent for antimicrobial photodynamic
therapy, Biomed. Photon., 13, 14-19, https://doi.org/
10.24931/2413-9432-2024-13-3-14-19.
27. Popov, A., Suvorov, N., Larkina, M., Plotnikov, E.,
Varvashenya, R., Bodenko, V., Yanovich, G.,
Ostroverkhov, P., Usachev, M., Filonenko, E.,
Belousov, M., and Grin, M. (2024) Novel chlorin with
a HYNIC: synthesis, 99mTc-radiolabeling, and initial
preclinical evaluation, Molecules, 30, 117, https://
doi.org/10.3390/molecules30010117.
28. Abiraj, K., Mansi, R., Tamma, M.-L., Forrer, F.,
Cescato, R., Reubi, J. C., Akyel, K. G., and Maecke,
H. R. (2010) Tetraamine‐derived bifunctional chela-
tors for technetium‐99m labelling: synthesis, biocon-
jugation and evaluation as targeted SPECT imaging
probes for GRP‐receptor‐positive tumours, Chem.
Eur. J., 16, 2115-2124, https://doi.org/10.1002/chem.
200902011.
29. Hicks, M. R., Rullay, A. K., Pedrido, R., Crout, D. H.,
and Pinheiro, T. J. (2008) Efficient synthesis of
methanesulphonate-derived lipid chains for at-
tachment of proteins to lipid membranes, Synth.
Commun., 38, 3726-3750, https://doi.org/10.1080/
00397910802213794.
30. Van Greunen, D. G., Cordier, W., Nell, M., Van der
Westhuyzen, C., Steenkamp, V., Panayides, J. L., and
Riley, D.L. (2017) Targeting Alzheimer’s disease by in-
vestigating previously unexplored chemical space sur-
rounding the cholinesterase inhibitor donepezil, Eur.
J. Med. Chem., 127, 671-690, https://doi.org/10.1016/
j.ejmech.2016.10.036.
31. Suvorov, N. V., Grin, M. A., Popkov, A. M., Garanina,
A.S., Mironov, A.F., and Majouga, A. G. (2016) Novel