
PROTECTIVE ROLE OF PLASTOQUINONE 973
BIOCHEMISTRY (Moscow) Vol. 90 No. 7 2025
77. Gilpin, D. A. (1996) Calculation of a new Meeh con-
stant and experimental determination of burn size,
Burns, 22, 607-611, https://doi.org/10.1016/S0305-
4179(96)00064-2.
78. Andreev, Yu. N., Barkagan, Z. S., Bulanov, A. Yu.,
Vorob’ev, A. I., and Vorob’ev, P. A. (2002) Hematology
Manual [in Russian], Vol.3, Newdiamed, Moscow.
79. Blinyaeva, L. G., Lemeshevskii, V. O., and Sineleva, M.
V. (2018) Blood physiology, Teaching Manual [in Rus-
sian], IVTs Minfina, Minsk.
80. Povzun, A. S., Krylov, K. M., Krylov, P. K., Furman,
I. B., Belousova, I. E., Michunskii, K. E., and Orlova,
O. V. (2017) Toxic epidermal necrolysis, problems
of diagnosis and therapy, Ann. Crit. Care, 2, 69-75,
https://doi.org/10.21320/1818-474X-2017-2-69-75.
81. Akhishmin, A. A., Borisova, M. M., Vetoshkina,
D. V., Viljanen, D. V., Ivanov, B. N., Krupyanko, A. V.,
Osochuk, S. S., and Pashkevich, N. I. (2024) Method
for protecting erythrocytes from deformation and
hemolysis while preserving epidermal thickness and
reducing damaged hair follicles in the treatment
of wounds and burns using plastoquinone, RU pat-
ent 2819761 C1, No. 2023111723, filed May 5, 2023,
published May 23, 2024, https://patents.google.com/
patent/RU2819761C1/ru.
82. Churilova, I. V., Zinov’ev, E. V., Paramonov, B. A.,
Drozdova, Yu. I., Sidel’nikov, V. O., and Chebotarev,
V.Yu. (2002) Effect of Erysod (erythrocyte superoxide
dismutase) on blood concentration of reactive oxy-
gen species in patients with severe burns and burn
shock, Bull. Exp. Biol. Med., 134, 454-456, https://
doi.org/10.1023/A:1022638213724.
83. Vasil’chuk, I. M., Pogorelaia, N. F., and Tkachenko,
N.S. (1992) Prediction of the severity of the course of
a pathologic process at various stages of burns using
phytolectins [in Russian], Clin. Surg., 3, 9-11.
84. Baskurt, O. K., and Meiselman, H. J. (2008) RBC ag-
gregation: more important than RBC adhesion to en-
dothelial cells as a determinant of invivo blood flow
in health and disease, Microcirculation, 15, 585-590,
https://doi.org/10.1080/10739680802107447.
85. Pires, I. S., and Palmer, A. F. (2020) Tangential flow
filtration of haptoglobin, Biotechnol. Prog., 36, e3010,
https://doi.org/10.1002/btpr.3010.
86. De Leeuw, J., De Vijlder, H., Bjerring, P., and
Neumann, H. (2009) Liposomes in dermatology to-
day, Acad. Dermatol. Venereol., 23, 505-516, https://
doi.org/10.1111/j.1468-3083.2009.03100.x.
87. Guidoni,M., De Christo Scherer, M.M., Figueira, M.M.,
Schmitt, E.F.P., De Almeida, L.C., Scherer,R., Bogusz,S.,
and Fronza,M. (2019) Fatty acid composition of vege-
table oil blend and in vitro effects of pharmacothera-
peutical skin care applications, Braz.J. Med. Biol. Res.,
52, e8209, https://doi.org/10.1590/1414-431x20188209.
88. Ribeiro Barros Cardoso, C., Aparecida Souza, M.,
Amália Vieira Ferro, E., Favoreto, S., and Deolina
Oliveira Pena,J. (2004) Influence of topical administra-
tion of n‐3 and n‐6 essential and n‐9 nonessential fat-
ty acids on the healing of cutaneous wounds, Wound
Repair Regener., 12, 235-243, https://doi.org/10.1111/
j.1067-1927.2004.012216.x.
89. Fang, C.-L., Aljuffali, I. A., Li, Y.-C., and Fang, J.-Y.
(2014) Delivery and targeting of nanoparticles into
hair follicles, Ther. Deliv., 5, 991-1006, https://doi.org/
10.4155/tde.14.61.
90. Kawashima, H., and Yoshizawa, K. (2023) The phys-
iological and pathological properties of Mead acid,
an endogenous multifunctional n-9 polyunsatu-
rated fatty acid, Lipids Health Dis., 22, 172, https://
doi.org/10.1186/s12944-023-01937-6.
91. Hilton, J. G. (1985) Effects of thermal trauma on
dog erythrocyte ATPase and shape, Burns, 12, 78-83,
https://doi.org/10.1016/0305-4179(85)90031-2.
92. Vtiurin, B. V., Kaem, R. I., and Chervonskaia, N. V.
(1982) Changes in erythrocyte membrane and eryth-
rocyte shape during burn septicotoxemia, Bull. Exp.
Biol. Med., 94, 117-119.
93. Skulachev, V.P. (2012) Mitochondria-targeted antioxi-
dants as promising drugs for treatment of age-related
brain diseases, J.Alzheimers Dis., 28, 283-289, https://
doi.org/10.3233/JAD-2011-111391.
94. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E.,
Chernyak, B. V., Chertkov, V. A., Domnina, L. V.,
Ivanova, O. Yu., Izyumov, D. S., Khailova, L. S.,
Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G.,
Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya,
A.A., Pletjushkina, O.Yu., Pustovidko, A.V., Roginsky,
V.A., Rokitskaya, T. I., Ruuge, E.K., Saprunova, V.B.,
Severina, I. I., Simonyan, R. A., Skulachev, I. V.,
Skulachev, M. V., et al. (2008) Mitochondria-targeted
plastoquinone derivatives as tools to interrupt execu-
tion of the aging program. 1.Cationic plastoquinone
derivatives: synthesis and in vitro studies, Biochem-
istry (Moscow), 73, 1273-1287, https://doi.org/10.1134/
S0006297908120018.
95. Beyer, R. E., Segura-Aguilar, J., Di Bernardo, S.,
Cavazzoni, M., Fato, R., Fiorentini, D., Galli, M. C.,
Setti, M., Landi, L., and Lenaz, G. (1996) The role of
DT-diaphorase in the maintenance of the reduced
antioxidant form of coenzyme Q in membrane sys-
tems, Proc. Natl. Acad. Sci. USA, 93, 2528-2532, https://
doi.org/10.1073/pnas.93.6.2528.
96. Navarro, F., Villalba, J. M., Crane, F. L., Mackellar,
W. C., and Navas, P. (1995) A phospholipid-depen-
dent NADH-coenzymeQ reductase from liver plasma
membrane, Biochem. Biophys. Res. Commun., 212,
138-143, https://doi.org/10.1006/bbrc.1995.1947.
97. Nordman, T., Xia, L., Björkhem-Bergman, L., Damdi-
mopoulos, A., Nalvarte, I., Arnér, E. S. J., Spyrou, G.,
Eriksson, L. C., Björnstedt, M., and Olsson, J. M.
(2003) Regeneration of the antioxidant ubiquinol by
lipoamide dehydrogenase, thioredoxin reductase and