
PHOTOPRODUCTION OF HYDROGEN UPON PHOTOINHIBITION 941
BIOCHEMISTRY (Moscow) Vol. 90 No. 7 2025
The obtained results show that the method has
competitive potential, which could be realized with
optimization of cultivation conditions. However, fur-
ther optimization of the method requires understand-
ing of the mechanisms of the observed glucose con-
tent changes in the microalgae cells during incubation
in air atmosphere and associated changes in activity
of Calvin cycle and respiration, which would require
additional investigations.
Abbreviations. PSII, photosystem II; Chl, chloro-
phyll; DCMU, (3-(3,4-dichlorophenyl)-1,1-dimethylurea)
(diuron); Fv/Fm, efficiency of photochemical energy
transformation in PSII.
Contributions. A. A. Volgusheva – concept of the
study, conducting experiments, and writing text of the
paper; A. A. Volgusheva and T. K. Antal – discussion of
the study results; T. K. Antal– editing text of the paper.
Funding. This study was financially supported by
the State Budget project of the Lomonosov Moscow
State University.
Ethics approval and consent to participate. This
article does not contain any studies with human par-
ticipants or animals performed by any of the authors.
Conflict of interest. The authors of this work de-
clare that they have no conflicts of interest.
REFERENCES
1. Kalamaras, C.M., and Efstathiou, A.M. (2013) Hydro-
gen production technologies: current state and future
developments, Conf. Papers Energy, 6, 1-9, https://
doi.org/10.1155/2013/690627.
2. Kosourov, S., Böhm, M., Senger, M., Berggren, G.,
Stensjö,K., Mamedov,F., Lindblad,P., and Allahverdi-
yeva, Y. (2021) Photosynthetic hydrogen production:
novel protocols, promising engineering approach-
es and application of semisynthetic hydrogenases,
Physiol. Plant., 173, 555-567, https://doi.org/10.1111/
ppl.13428.
3. Tsygankov, A.A. (2007) Biological generation of hydro-
gen, Russ. J. Gen. Chem., 77, 685-693, https://doi.org/
10.1134/S1070363207040317.
4. Antal, T.K., Krendeleva, T.E., and Rubin, A.B. (2011)
Acclimation of green algae to sulfur deficiency: un-
derlying mechanisms and application for hydrogen
production, Appl. Microbiol. Biotechnol., 89, 3-15,
https://doi.org/10.1007/s00253-010-2879-6.
5. Volgusheva, A., Styring, S., and Mamedov, F. (2013)
Increased photosystem II stability promotes H
2
pro-
duction in sulfur-deprived Chlamydomonas rein-
hardtii, Proc. Natl. Acad. Sci. USA, 110, 7223-7228,
https://doi.org/10.1073/pnas.1220645110.
6. Antal, T., Petrova, E., Slepnyova, V., Kukarskikh, G.,
Volgusheva, A., Dubini, A., and Rubin, A. B. (2020)
Photosynthetic hydrogen production as acclima-
tion mechanism in nutrient-deprived Chlamydomo-
nas, Algal Res., 49, 101951, https://doi.org/10.1016/
j.algal.2020.101951.
7. Liran, O., Semyatich, R., Milrad, Y., Eilenberg, H.,
Weiner, I., and Yacoby, I. (2016) Microoxic niches
within the thylakoid stroma of air-grown Chlamydo-
monas reinhardtii protect [FeFe]-hydrogenase and
support hydrogen production under fully aerobic
environment, Plant Physiol., 172, 264-271, https://
doi.org/10.1104/pp.16.01063.
8. Kosourov,S., Jokel,M., Aro, E.M., and Allahverdiyeva,Y.
(2018) A new approach for sustained and efficient
H
2
photoproduction by Chlamydomonas reinhardtii,
Energy Environ. Sci., 11, 1431-1436, https://doi.org/
10.1039/C8EE00054A.
9. Milrad, Y., Schweitzer, S., Feldman, Y., and Yacoby, I.
(2018) Green algal hydrogenase activity is outcom-
peted by carbon fixation before inactivation by ox-
ygen takes place, Plant Physiol., 177, 918-926, https://
doi.org/10.1104/pp.18.00229.
10. Hwang, J. H., Kim, H. C., Choi, J. A., Abou-Shanab,
R.A.I., Dempsey, B.A., Regan, J.M., Kim, J.R., Song,H.,
Nam, I. H., Kim, S. N., Lee, W., Park, D., Kim, Y.,
Choi,J., Ji, M.K., Jung,W., and Jeon, B.H. (2014) Pho-
toautotrophic hydrogen production by eukaryotic
microalgae under aerobic conditions, Nat. Commun.,
5, 3234, https://doi.org/10.1038/ncomms4234.
11. Melis,A., Zhang,L., Forestier,M., Ghirardi, M.L., and
Seibert,M. (2000) Sustained photobiological hydrogen
gas production upon reversible inactivation of oxy-
gen evolution in the green alga Chlamydomonas rein-
hardtii, Plant Physiol., 122, 127-136, https://doi.org/
10.1104/pp.122.1.127.
12. Tsygankov, A. (2002) Hydrogen photoproduction un-
der continuous illumination by sulfur-deprived, syn-
chronous Chlamydomonas reinhardtii cultures, Int.J.
Hydrog. Energy, 27, 1239-1244, https://doi.org/10.1016/
S0360-3199(02)00108-8.
13. Philipps, G., Happe, T., and Hemschemeier, A. (2012)
Nitrogen deprivation results in photosynthetic hy-
drogen production in Chlamydomonas reinhard-
tii, Planta, 235, 729-745, https://doi.org/10.1007/
s00425-011-1537-2.
14. He, M., Li, L., Zhang, L., and Liu, J. (2012) The en-
hancement of hydrogen photoproduction in Chlorel-
la protothecoides exposed to nitrogen limitation and
sulfur deprivation, Int. J. Hydrog. Energy, 37, 16903-
16915, https://doi.org/10.1016/j.ijhydene.2012.08.121.
15. Batyrova, K.A., Tsygankov, A.A., and Kosourov, S.N.
(2012) Sustained hydrogen photoproduction by phos-
phorus-deprived Chlamydomonas reinhardtii cul-
tures, Int. J. Hydrog. Energy, 37, 8834-8839, https://
doi.org/10.1016/j.ijhydene.2012.01.068.
16. Papazi, A., Gjindali, A. I., Kastanaki, E., Assimako-
poulos, K., Stamatakis, K., and Kotzabasis, K. (2014)