
RUDENKO et al.908
BIOCHEMISTRY (Moscow) Vol. 90 No. 7 2025
yield potential, and after use efficiency in rice,
Int. J. Mol. Sci., 14, 5560, https://doi.org/10.3390/
ijms24065560.
14. Sharma, N., Froehlich, J. E., Rillema, R., Raba, D. A.,
Chambers, T., Kerfeld, C., Kramer, D., Walker, B., and
Brandizzi, F. (2023) Arabidopsis stromal carbonic
anhydrases exhibit non-overlapping roles in photo-
synthetic efficiency and development, Plant J., 115,
386-397, https://doi.org/10.1111/tpj.16231.
15. Friso, G., Giacomelli, L., Ytterberg, A. J., Peltier, J. B.,
Rudella, A., Sun, Q., and Wijk, K. J. (2004) In-depth
analysis of the thylakoid membrane proteome of
Arabidopsis thaliana chloroplasts: new proteins, new
functions, and a plastid proteome database, Plant
Cell, 16, 478-499, https://doi.org/10.1105/tpc.017814.
16. Ignatova, L., Zhurikova, E., and Ivanov, B. (2019)
The presence of the low molecular mass carbon-
ic anhydrase in photosystem II of C3 higher plants,
J.Plant Physiol., 232, 94-99, https://doi.org/10.1016/
j.jplph.2018.11.017.
17. Fedorchuk, T. P., Kireeva, I. A., Opanasenko,
V. K., Terentyev, V. V., Rudenko, N. N., Borisova-
Mubarakshina, M. M., and Ivanov, B. N. (2021) Al-
pha carbonic anhydrase 5 mediates stimulation of
ATP synthesis by bicarbonate in isolated Arabidop-
sis thylakoids, Front. Plant Sci., 12, 662082, https://
doi.org/10.3389/fpls.2021.662082.
18. Rudenko, N.N., Ignatova, L.K., and Ivanov, B.N. (2007)
Multiple sources of carbonic anhydrase activity in
pea thylakoids. Soluble and membrane-bound forms,
Photosynth. Res., 91, 81-89, https://doi.org/10.1007/
s11120-007-9148-2.
19. Fedorchuk, T., Rudenko, N., Ignatova, L., and
Ivanov,B. (2014) Thepresence of soluble carbonic an-
hydrase in the thylakoid lumen of chloroplasts from
Arabidopsis leaves, J.Plant Physiol., 171, 903-906,
https://doi.org/10.1016/j.jplph.2014.02.009.
20. Zhurikova, E. M., Ignatova, L. K., Rudenko, N. N.,
Mudrik, V. A., Vetoshkina, D. V., and Ivanov, B. N.
(2016) Involvement of two carboanhydrases of the
alpha family in photosynthetic reactions in Arabidop-
sis thaliana, Biochemistry (Moscow), 81, 1463-1470,
https://doi.org/10.1134/S0006297916100151.
21. Nadeeva, E. M., Ignatova, L. K., Rudenko, N. N.,
Vetoshkina, D. V., Naydov, I. A., Kozuleva, M. A., and
Ivanov, B. N. (2023) Features of photosynthesis in
Arabidopsis thaliana plants with knocked out gene
of alpha carbonic anhydrase 2, Plants, 12, 1763,
https://doi.org/10.3390/plants12091763.
22. Price, G.D., von Caemmerer,S., Evans, J.R., Yu, J.-W.,
Lloyd, J., Oja, V., Kell, P., Harrison, K., Gallagher, A.,
and Badger, M.R. (1994) Specific reduction of chloro-
plast carbonic anhydrase activity by antisense RNA
in transgenic tobacco has a minor effect on photo-
synthetic CO
2
assimilation, Planta, 193, 331-340,
https://doi.org/10.1007/BF00201810.
23. Ferreira, F., Guo, C., and Coleman, J. (2008) Reduc-
tion of plastid-localized carbonic anhydrase activity
results in reduced Arabidopsis seedling survivorship,
Plant Physiol., 147, 585-594, https://doi.org/10.1104/
pp.108.118661.
24. Hu,H., Boisson-Dernier,A., Israelsson-Nordström,M.,
Böhmer, M., Xue, S., Ries, A., Godoski, J., Kuhn, J.M.,
and Schroeder, J. I. (2010) Carbonic anhydrases are
upstream regulators of CO
2
-controlled stomatal move-
ments in guard cells, Nat. Cell Biol., 12, 87-93, https://
doi.org/10.1038/ncb2009.
25. Chen,T., Wu,H., Wu,J., Fan,X., Li,X., and Lin,Y. (2017)
Absence of OsbCA1 causes a CO
2
deficit and affects
leaf photosynthesis and the stomatal response toCO
2
in rice, Plant J., 90, 344-357, https://doi.org/10.1111/
tpj.13497.
26. DiMario, R. J., Quebedeaux, J. C., Longstreth, D. J.,
Dassanayake,M., Hartman, M.M., and Moroney, J.V.
(2016) The cytoplasmic carbonic anhydrases βCA2
and βCA4 are required for optimal plant growth
at low CO
2
, Plant Physiol., 171, 280-293, https://
doi.org/10.1104/pp.15.01990.
27. Hoang, C., and Chapman, K. (2002) Biochemical and
molecular inhibition of plastidial carbonic anhydrase
reduces the incorporation of acetate into lipids in
cotton embryos and tobacco cell suspensions and
leaves, Plant Physiol., 128, 1417-1427, https://doi.org/
10.1104/pp.010879.
28. Wasternack, C., and Feussner, I. (2018) The oxylip-
in pathways: biochemistry and function, Annu.
Rev. Plant. Biol., 69, 363-386, https://doi.org/10.1146/
annurev-arplant-042817-040440.
29. Slaymaker, D.H., Navarre, D.A., Clark,D., del Pozo,O.,
Martin, G. B., and Klessig, D. (2002) The tobacco sal-
icylic acid binding protein 3 (SABP3) is the chloro-
plast carbonic anhydrase which exhibits antioxidant
activity and plays a role in the hypersensitive defense
response, Proc. Natl. Acad. Sci. USA, 99, 11640-11645,
https://doi.org/10.1073/pnas.182427699.
30. Medina-Puche, L., Castelló, M., Canet, J., Lamilla, J.,
Colombo, M., and Tornero, P. (2017) β-carbonic an-
hydrases play a role in salicylic acid perception
in Arabidopsis, PLoS One, 12, e0181820, https://
doi.org/10.1371/journal.pone.0181820.
31. Rudenko, N. N., Fedorchuk, T. P., Vetoshkina, D. V.,
Zhurikova, E. M., Ignatova, L. K., and Ivanov, B. N.
(2018) Influence of knockout of At4g20990 gene en-
coding α-CA4 on photosystem II light-harvesting an-
tenna in plants grown under different light intensi-
ties and day lengths, Protoplasma, 255, 69-78, https://
doi.org/10.1007/s00709-017-1133-9.
32. Rudenko, N. N., Fedorchuk, T. P., Terentyev, V. V.,
Dymova, O.V., Naydov, I.A., Golovko, T.K., Borisova-
Mubarakshina, M. M., and Ivanov, B. N. (2020)
The role of carbonic anhydrase α-CA4 in the adap-
tive reactions of photosynthetic apparatus. Thestudy