
LUKASHEV et al.892
BIOCHEMISTRY (Moscow) Vol. 90 No. 7 2025
10. Milano, F., Dorogi, M., Szebenyi, K., Nagy, L.,
Maroti,P., Varo,G., Giotta,L., Agostiano,A., and Trot-
ta, M. (2007) Enthalpy/entropy driven activation of
the first interquinone electron transfer in bacterial
photosynthetic reaction centers embedded in vesi-
cles of physiologically important phospholipids, Bio-
electrochemistry, 70, 18-22, https://doi.org/10.1016/
j.bioelechem.2006.03.024.
11. Agostiano, A., Milano, F., and Trotta,M. (2005) Trap-
ping of a long-living charge separated state of pho-
tosynthetic reaction centers in proteoliposomes of
negatively charged phospholipids, Photosynth. Res.,
83, 53-61, https://doi.org/10.1007/s11120-004-3197-6.
12. Lavergne,J., Matthews, C., and Ginet, N. (1999) Elec-
tron and proton transfer on the acceptor side of the
reaction center in chromatophores of Rhodobacter
capsulatus: evidence for direct protonation of the
semiquinone state of Q
B
, Biochemistry, 38, 4542-4552,
https://doi.org/10.1021/bi9827621.
13. Graige, M.S., Paddock, M.I., Feher,G., and Okamura,
M. Y. (1999) Observation of the protonated semiqui-
none intermediate in isolated reaction centers from
Rhodobacter sphaeroides: implications for the mech-
anism of electron and proton transfer in proteins,
Biochemistry, 38, 11465-11473, https://doi.org/10.1021/
bi990708u.
14. Woronowicz,K., Sha,D., Frese, R.N., and Niederman,
R.A. (2011) The accumulation of the light-harvesting
2 complex during remodeling of the Rhodobacter
sphaeroides intracytoplasmic membrane results in a
slowing of the electron transfer turnover rate of pho-
tochemical reaction centers, Biochemistry, 50, 4819-
4829, https://doi.org/10.1021/bi101667e.
15. Clayton, R. K. (1966) Spectroscopic analysis of bacte-
riochlorophylls invitro and invivo, Photochem. Pho-
tobiol., 5, 669-677, https://doi.org/10.1111/j.1751-1097.
1966.tb05813.x.
16. Zakharova, N.I., and Churbanova, I.Yu. (2000) Meth-
ods of isolation of reaction center preparations from
photosynthetic purple bacteria, Biochemistry (Mos-
cow), 65, 149-181.
17. Drachev, L.A., Kaminskaya, O.P., Konstantinov, A.A.,
Mamedov, M.D., Samuilov, V.D., Semenov, A.Yu., and
Skulachev, V.P. (1986) Effects of electron donors and
acceptors on the kinetics of the photoelectric respons-
es in Rhodospirillum rubrum and Rhodopseudomas
sphaeroides chromatophores, Biochim. Biophys. Acta,
850, 1-9, https://doi.org/10.1016/0005-2728(86)90002-2.
18. Drachev, L. A., Kaurov, B. S., Mamedov, M. D.,
Mulkidjanian, A. Ya., Semenov, A. Yu., Shinkarev,
V. P., Skulachev, V. P., and Verkhovsky, M. I. (1989)
Flash-induced electrogenic events in the photosyn-
thetic reaction center and bc
1
complexes of Rhodo-
bacter sphaeroides chromatophores, Biochim. Bio-
phys. Acta, 973, 189-197, https://doi.org/10.1016/
S0005-2728(89)80421-9.
19. Jackson, J. B., and Crofts, A. R. (1971) The kinetics
of light induced carotenoid changes in Rhodopseu-
domonas sphaeroides and their relation to elec-
trical field generation across the chromatophore
membrane, Eur. J. Biochem., 18, 120-130, https://
doi.org/10.1111/j.1432-1033.1971.tb01222.x.
20. Drachev, L.A., Kaulen, A.D., Semenov, A.Y., Severina,
I.I., and Skulachev, V.P. (1979) Lipid-impregnated fil-
ters as a tool for studying the electric current-gen-
erating proteins, Anal. Biochem., 96, 250-262, https://
doi.org/10.1016/0003-2697(79)90580-3.
21. Skulachev, V. P. (1982) A single turnover study of
photoelectric current-generating proteins, Methods
Enzymol., 88, 35-45, https://doi.org/10.1016/0076-
6879(82)88010-5.
22. Jackson, J. B., and Crofts, A. R. (1969) Bromothy-
mol blue and bromocresol purple as indicators
of pH changes in chromatophores of Rhodospiril-
lum rubrum, Eur. J. Biochem., 10, 226-237, https://
doi.org/10.1111/j.1432-1033.1969.tb00678.x.
23. Witt, H.T. (1979) Energy conversion in the functional
membrane of photosynthesis. Analysis by light pulse
and electric pulse methods. The central role of the
electric field, Biochim. Biophys. Acta, 505, 355-427,
https://doi.org/10.1016/0304-4173(79)90008-9.
24. Malferrari, M., Malferrari, D., Francia, F., Galletti, P.,
Tagliavini, E., and Venturoli, G. (2015) Ionic liq-
uids effects on the permeability of photosynthetic
membranes probed by the electrochromic shift of
endogenous carotenoids, Biochim. Biophys. Acta,
1848, 2898-2909, https://doi.org/10.1016/j.bbamem.
2015.09.006.
25. Saphon,S., Jackson, J. B., and Witt, H. T. (1975) Elec-
trical potential changes, H
+
translocation and phos-
phorylation induced by short flash excitation in Rho-
dopseudomonas sphaeroides chromatophores, Bio-
chim. Biophys. Acta, 408, 67-82, https://doi.org/10.1016/
0005-2728(75)90159-0.
26. Gibasiewicz, K., and Pajzderska, M. (2008) Primary
radical pair P
+
H
–
lifetime in Rhodobacter sphaeroi-
des with blocked electron transfer to Q
A
. Effect of
o-phenanthroline, J. Phys. Chem. B, 112, 1858-1865,
https://doi.org/10.1021/jp075184j.
27. Okamura, M. Y., Feher, G., and Nelson, N. (1982) Re-
action centers, in Photosynthesis Energy conversion
by plants and bacteria, (Govindjee, ed.) Vol. 1, Acad.
Press, N-Y – London – Paris, pp.197-254.
28. Li,J., Gilroy,D., Tiede, D.M., and Gunner, M.R. (1998)
Kinetic phases in the electron transfer from P
+
Q
A
–
Q
B
to P
+
Q
A
Q
B
–
and the associated processes in Rhodo-
bacter sphaeroides R-26 reaction centers, Biochemis-
try, 37, 2818-2829, https://doi.org/10.1021/bi971699x.
29. Pingale, S.S., Ware, A.P., and Gadre, S.R. (2018) Un-
veiling electrostatic portraits of quinones in reduction
and protonation states, J.Chem. Sci., 130, 50, https://
doi.org/10.1007/s12039-018-1450-3.